In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytical...In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.展开更多
This paper is concerned with the existence and uniqueness of solution for a class of stochastic functional equation: X =φ(X), where φ: B → B and B is a Banach space consisted of all left-continuous, (■_t)-adapted ...This paper is concerned with the existence and uniqueness of solution for a class of stochastic functional equation: X =φ(X), where φ: B → B and B is a Banach space consisted of all left-continuous, (■_t)-adapted processes. Also, the main result is applied to some S.D.E (or S.I.E.). And the authors adopted some of the results in current research in the models of stochastic control recently. This paper proves the ekistence and uniquence and uniqueness of solution for stochastic functional equation. A series of corollaries are deduced from the special examples of the theorems in this paper.展开更多
In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equati...In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equations (BSDEs, for short). Some interesting motivations of studying BSVIEs are recalled. With proper solution concepts, it is possible to establish the corresponding well-posedness for BSVIEs. We also survey various comparison theorems for solutions to BSVIEs.展开更多
This paper investigates the numerical solution of two-dimensional nonlinear stochastic Itô-Volterra integral equations based on block pulse functions. The nonlinear stochastic integral equation is transformed...This paper investigates the numerical solution of two-dimensional nonlinear stochastic Itô-Volterra integral equations based on block pulse functions. The nonlinear stochastic integral equation is transformed into a set of algebraic equations by operational matrix of block pulse functions. Then, we give error analysis and prove that the rate of convergence of this method is efficient. Lastly, a numerical example is given to confirm the method.展开更多
Using multiple stochastic integrals and the stochastic calculus for the frac-tional Brownian sheet, we define and we analyze the 2D-fractional stochastic currents.
This paper studies the limit distributions for discretization error of irregular sam- pling approximations of stochastic integral. The irregular sampling approximation was first presented in Hayashi et al.[3], which w...This paper studies the limit distributions for discretization error of irregular sam- pling approximations of stochastic integral. The irregular sampling approximation was first presented in Hayashi et al.[3], which was more general than the sampling approximation in Lindberg and Rootzen [10]. As applications, we derive the asymptotic distribution of hedging error and the Euler scheme of stochastic differential equation respectively.展开更多
This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s...This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s),u(s))dB(s)+∫_(0)^(t)h(t,s)dξ(s).by Here d B(s)denotes the Brownian motion It?type differential,ξdenotes the singular control(singular in time t with respect to Lebesgue measure)and u denotes the regular control(absolutely continuous with respect to Lebesgue measure).Such systems may for example be used to model harvesting of populations with memory,where X(t)represents the population density at time t,and the singular control processξrepresents the harvesting effort rate.The total income from the harvesting is represented by J(u, ξ) = E[∫_(0)^(t) f_(0)(t,X(t), u(t))dt + ∫_(0)^(t)f_(1)(t,X(t))dξ(t) + g(X(T))] for the given functions f0,f1 and g,where T>0 is a constant denoting the terminal time of the harvesting.Note that it is important to allow the controls to be singular,because in some cases the optimal controls are of this type.Using Hida-Malliavin calculus,we prove sufficient conditions and necessary conditions of optimality of controls.As a consequence,we obtain a new type of backward stochastic Volterra integral equations with singular drift.Finally,to illustrate our results,we apply them to discuss optimal harvesting problems with possibly density dependent prices.展开更多
This paper considers a concrete stochastic nonlinear system with stochastic unmeasurable inverse dynamics. Motivated by the concept of integral input-to-state stability (iISS) in deterministic systems and stochastic...This paper considers a concrete stochastic nonlinear system with stochastic unmeasurable inverse dynamics. Motivated by the concept of integral input-to-state stability (iISS) in deterministic systems and stochastic input-to-state stability (SISS) in stochastic systems, a concept of stochastic integral input-to-state stability (SiISS) using Lyapunov functions is first introduced. A constructive strategy is proposed to design a dynamic output feedback control law, which drives the state to the origin almost surely while keeping all other closed-loop signals almost surely bounded. At last, a simulation is given to verify the effectiveness of the control law.展开更多
Assume that D is a nuclear space and D' its strong topological dual space. Let {B_t}t∈(0,∞) be a Wiener D'-process. In this paper, the real-valued and D'-valued weak stochastic integral with respect to {...Assume that D is a nuclear space and D' its strong topological dual space. Let {B_t}t∈(0,∞) be a Wiener D'-process. In this paper, the real-valued and D'-valued weak stochastic integral with respect to {B_t} are established.AMS Subject Classification. 60H05.展开更多
In this paper we obtain an Itôdifferential representation for a class of singular stochastic Volterra integral equations.As an application,we investigate the rate of convergence in the small time central limit th...In this paper we obtain an Itôdifferential representation for a class of singular stochastic Volterra integral equations.As an application,we investigate the rate of convergence in the small time central limit theorem for the solution.展开更多
The approximate transient response of quasi in- tegrable Hamiltonian systems under Gaussian white noise excitations is investigated. First, the averaged It6 equa- tions for independent motion integrals and the associa...The approximate transient response of quasi in- tegrable Hamiltonian systems under Gaussian white noise excitations is investigated. First, the averaged It6 equa- tions for independent motion integrals and the associated Fokker-Planck-Kolmogorov (FPK) equation governing the transient probability density of independent motion integrals of the system are derived by applying the stochastic averag- ing method for quasi integrable Hamiltonian systems. Then, approximate solution of the transient probability density of independent motion integrals is obtained by applying the Galerkin method to solve the FPK equation. The approxi- mate transient solution is expressed as a series in terms of properly selected base functions with time-dependent coeffi- cients. The transient probability densities of displacements and velocities can be derived from that of independent mo- tion integrals. Three examples are given to illustrate the ap- plication of the proposed procedure. It is shown that the re- suits for the three examples obtained by using the proposed procedure agree well with those from Monte Carlo simula- tion of the original systems.展开更多
We study the problem of parameter estimation for mean-reverting α-stable motion, dXt = (a0 - θ0Xt)dt + dZt, observed at discrete time instants. A least squares estimator is obtained and its asymptotics is discuss...We study the problem of parameter estimation for mean-reverting α-stable motion, dXt = (a0 - θ0Xt)dt + dZt, observed at discrete time instants. A least squares estimator is obtained and its asymptotics is discussed in the singular case (a0, θ0) = (0, 0). If a0 = 0, then the mean-reverting α-stable motion becomes Ornstein-Uhlenbeck process and is studied in [7] in the ergodic case θ0 〉 0. For the Ornstein-Uhlenbeck process, asymptotics of the least squares estimators for the singular case (θ0 = 0) and for ergodic case (θ0 〉 0) are completely different.展开更多
This paper studies the insurer’s solvency ratio model in a class of mixed fractional Brownian motion(MFBM) market, where the prices of assets follow a Wick-It? stochastic differential equation driven by the MFBM, by ...This paper studies the insurer’s solvency ratio model in a class of mixed fractional Brownian motion(MFBM) market, where the prices of assets follow a Wick-It? stochastic differential equation driven by the MFBM, by the method of the stochastic calculus of the MFBM and the pricing formula of European call option for the MFBM, the explicit formula for the expected present value of shareholders’ terminal payoff is given. The model extends the existing results.展开更多
The insurer's solvency ratio model in a class of fractional Black-Scholes markets is studied. In this market,the price of assets follows a Wick-It stochastic differential equation,which is driven by the fraction...The insurer's solvency ratio model in a class of fractional Black-Scholes markets is studied. In this market,the price of assets follows a Wick-It stochastic differential equation,which is driven by the fractional Brownian motion. The market coefficients of market model are deterministic functions. By the stochastic calculus of the fractional Brownian motion and the pricing formula of European call option for the fractional Brownian motion,the explicit formula for the expected present value of shareholder's terminal payoff is given. The model extends the existing results.展开更多
In this article, we give a new proof of the Itôformula for some integral processes related to the space-time Lévy noise introduced in [1] [2] as an alternative for the Gaussian white noise perturbing an...In this article, we give a new proof of the Itôformula for some integral processes related to the space-time Lévy noise introduced in [1] [2] as an alternative for the Gaussian white noise perturbing an SPDE. We discuss two applications of this result, which are useful in the study of SPDEs driven by a space-time Lévy noise with finite variance: a maximal inequality for the p-th moment of the stochastic integral, and the Itôrepresentation theorem leading to a chaos expansion similar to the Gaussian case.展开更多
We prove a general version of the stochastic Fubini theorem for stochastic integrals of Banach space valued processes with respect to compensated Poisson random measures under weak integrability assumptions, which ext...We prove a general version of the stochastic Fubini theorem for stochastic integrals of Banach space valued processes with respect to compensated Poisson random measures under weak integrability assumptions, which extends this classical result from Hilbert space setting to Banach space setting.展开更多
In this paper, we deal with a class of one-dimensional backward doubly stochastic differential equations (BDSDEs). We obtain a generalized comparison theorem and a generalized existence theorem of BDSDEs.
In this paper, we deal with one dimensional backward doubly stochastic differential equations (BDSDEs). We obtain a comparison theorem and a uniqueness theorem for BDSDEs with continuous coefficients.
Nakao's stochastic integrals for continuous additive functionals of zero energy are extended from the symmetric Dirichlet forms setting to the non-symmetric Dirichlet forms setting. ItS's formula in terms of the ext...Nakao's stochastic integrals for continuous additive functionals of zero energy are extended from the symmetric Dirichlet forms setting to the non-symmetric Dirichlet forms setting. ItS's formula in terms of the extended stochastic integrals is obtained.展开更多
In this work the existence of solutions of one-dimensional backward doubly stochastic differential equations (BDSDEs) with coefficients left-Lipschitz in y (may be discontinuous) and Lipschitz in z is studied. Als...In this work the existence of solutions of one-dimensional backward doubly stochastic differential equations (BDSDEs) with coefficients left-Lipschitz in y (may be discontinuous) and Lipschitz in z is studied. Also, the associated comparison theorem is obtained.展开更多
基金supported by the National Natural Science Foundation of China (11901184, 11771343)the Natural Science Foundation of Hunan Province (2020JJ5025)。
文摘In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.
文摘This paper is concerned with the existence and uniqueness of solution for a class of stochastic functional equation: X =φ(X), where φ: B → B and B is a Banach space consisted of all left-continuous, (■_t)-adapted processes. Also, the main result is applied to some S.D.E (or S.I.E.). And the authors adopted some of the results in current research in the models of stochastic control recently. This paper proves the ekistence and uniquence and uniqueness of solution for stochastic functional equation. A series of corollaries are deduced from the special examples of the theorems in this paper.
文摘In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equations (BSDEs, for short). Some interesting motivations of studying BSVIEs are recalled. With proper solution concepts, it is possible to establish the corresponding well-posedness for BSVIEs. We also survey various comparison theorems for solutions to BSVIEs.
基金NSF Grants 11471105 of China, NSF Grants 2016CFB526 of Hubei Province, Innovation Team of the Educational Department of Hubei Province T201412, and Innovation Items of Hubei Normal University 2018032 and 2018105
文摘This paper investigates the numerical solution of two-dimensional nonlinear stochastic Itô-Volterra integral equations based on block pulse functions. The nonlinear stochastic integral equation is transformed into a set of algebraic equations by operational matrix of block pulse functions. Then, we give error analysis and prove that the rate of convergence of this method is efficient. Lastly, a numerical example is given to confirm the method.
基金Partially supported by the ANR grant "Masterie" BLAN 012103Support by the CNCS grant "PN-II-ID-PCE-2011-3-0593"
文摘Using multiple stochastic integrals and the stochastic calculus for the frac-tional Brownian sheet, we define and we analyze the 2D-fractional stochastic currents.
基金Supported by the National Natural Science Foundation of China(11371317)
文摘This paper studies the limit distributions for discretization error of irregular sam- pling approximations of stochastic integral. The irregular sampling approximation was first presented in Hayashi et al.[3], which was more general than the sampling approximation in Lindberg and Rootzen [10]. As applications, we derive the asymptotic distribution of hedging error and the Euler scheme of stochastic differential equation respectively.
基金the financial support provided by the Swedish Research Council grant(2020-04697)the Norwegian Research Council grant(250768/F20),respectively。
文摘This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s),u(s))dB(s)+∫_(0)^(t)h(t,s)dξ(s).by Here d B(s)denotes the Brownian motion It?type differential,ξdenotes the singular control(singular in time t with respect to Lebesgue measure)and u denotes the regular control(absolutely continuous with respect to Lebesgue measure).Such systems may for example be used to model harvesting of populations with memory,where X(t)represents the population density at time t,and the singular control processξrepresents the harvesting effort rate.The total income from the harvesting is represented by J(u, ξ) = E[∫_(0)^(t) f_(0)(t,X(t), u(t))dt + ∫_(0)^(t)f_(1)(t,X(t))dξ(t) + g(X(T))] for the given functions f0,f1 and g,where T>0 is a constant denoting the terminal time of the harvesting.Note that it is important to allow the controls to be singular,because in some cases the optimal controls are of this type.Using Hida-Malliavin calculus,we prove sufficient conditions and necessary conditions of optimality of controls.As a consequence,we obtain a new type of backward stochastic Volterra integral equations with singular drift.Finally,to illustrate our results,we apply them to discuss optimal harvesting problems with possibly density dependent prices.
基金supported by National Natural Science Foundation of China (No. 60774010, 10971256, and 60974028)Jiangsu"Six Top Talents" (No. 07-A-020)+2 种基金Natural Science Foundation of Jiangsu Province (No. BK2009083)Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(No.07KJB510114)Natural Science Foundation of Xuzhou Normal University (No. 08XLB20)
文摘This paper considers a concrete stochastic nonlinear system with stochastic unmeasurable inverse dynamics. Motivated by the concept of integral input-to-state stability (iISS) in deterministic systems and stochastic input-to-state stability (SISS) in stochastic systems, a concept of stochastic integral input-to-state stability (SiISS) using Lyapunov functions is first introduced. A constructive strategy is proposed to design a dynamic output feedback control law, which drives the state to the origin almost surely while keeping all other closed-loop signals almost surely bounded. At last, a simulation is given to verify the effectiveness of the control law.
文摘Assume that D is a nuclear space and D' its strong topological dual space. Let {B_t}t∈(0,∞) be a Wiener D'-process. In this paper, the real-valued and D'-valued weak stochastic integral with respect to {B_t} are established.AMS Subject Classification. 60H05.
基金Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number 101.03-2019.08.
文摘In this paper we obtain an Itôdifferential representation for a class of singular stochastic Volterra integral equations.As an application,we investigate the rate of convergence in the small time central limit theorem for the solution.
基金supported by the National Natural Science Foundation of China(10902094,10932009,11072212 and 11272279)the Special Foundation for Young Scientists of Fujian Province of China(2008F3100)
文摘The approximate transient response of quasi in- tegrable Hamiltonian systems under Gaussian white noise excitations is investigated. First, the averaged It6 equa- tions for independent motion integrals and the associated Fokker-Planck-Kolmogorov (FPK) equation governing the transient probability density of independent motion integrals of the system are derived by applying the stochastic averag- ing method for quasi integrable Hamiltonian systems. Then, approximate solution of the transient probability density of independent motion integrals is obtained by applying the Galerkin method to solve the FPK equation. The approxi- mate transient solution is expressed as a series in terms of properly selected base functions with time-dependent coeffi- cients. The transient probability densities of displacements and velocities can be derived from that of independent mo- tion integrals. Three examples are given to illustrate the ap- plication of the proposed procedure. It is shown that the re- suits for the three examples obtained by using the proposed procedure agree well with those from Monte Carlo simula- tion of the original systems.
基金Hu is supported by the National Science Foundation under Grant No.DMS0504783Long is supported by FAU Start-up funding at the C. E. Schmidt College of Science
文摘We study the problem of parameter estimation for mean-reverting α-stable motion, dXt = (a0 - θ0Xt)dt + dZt, observed at discrete time instants. A least squares estimator is obtained and its asymptotics is discussed in the singular case (a0, θ0) = (0, 0). If a0 = 0, then the mean-reverting α-stable motion becomes Ornstein-Uhlenbeck process and is studied in [7] in the ergodic case θ0 〉 0. For the Ornstein-Uhlenbeck process, asymptotics of the least squares estimators for the singular case (θ0 = 0) and for ergodic case (θ0 〉 0) are completely different.
基金Supported by National Natural Science Foundation of China(71171003,71271003,and 11326121)Natural Science Foundation of Anhui Province(1508085MA02)+1 种基金Teaching Research Project of Anhui Province(2013jyxm111)Opening Project of Financial Engineering Research and Development Center of Anhui Polytechnic University(JRGCKF201502)
文摘This paper studies the insurer’s solvency ratio model in a class of mixed fractional Brownian motion(MFBM) market, where the prices of assets follow a Wick-It? stochastic differential equation driven by the MFBM, by the method of the stochastic calculus of the MFBM and the pricing formula of European call option for the MFBM, the explicit formula for the expected present value of shareholders’ terminal payoff is given. The model extends the existing results.
基金National Natural Science Foundations of China(Nos.71271003,71571001,11326121)Natural Science Foundation of Anhui Province,China(No.1608085M A02)+1 种基金Teaching Research Project of Anhui Province,China(No.2013jyxm111)Opening Project of Financial Engineering Research and Development Center of Anhui Polytechnic University,China(No.JRGCKF201502)
文摘The insurer's solvency ratio model in a class of fractional Black-Scholes markets is studied. In this market,the price of assets follows a Wick-It stochastic differential equation,which is driven by the fractional Brownian motion. The market coefficients of market model are deterministic functions. By the stochastic calculus of the fractional Brownian motion and the pricing formula of European call option for the fractional Brownian motion,the explicit formula for the expected present value of shareholder's terminal payoff is given. The model extends the existing results.
基金funded by a grant from the Natural Sciences and Engineering Research Council of Canada.
文摘In this article, we give a new proof of the Itôformula for some integral processes related to the space-time Lévy noise introduced in [1] [2] as an alternative for the Gaussian white noise perturbing an SPDE. We discuss two applications of this result, which are useful in the study of SPDEs driven by a space-time Lévy noise with finite variance: a maximal inequality for the p-th moment of the stochastic integral, and the Itôrepresentation theorem leading to a chaos expansion similar to the Gaussian case.
基金Supported by NNSFC(Grant Nos.11571147,11822106 and 11831014)NSF of Jiangsu Province(Grant No.BK20160004)the PAPD of Jiangsu Higher Education Institutions。
文摘We prove a general version of the stochastic Fubini theorem for stochastic integrals of Banach space valued processes with respect to compensated Poisson random measures under weak integrability assumptions, which extends this classical result from Hilbert space setting to Banach space setting.
基金Supported by Marie Curie Initial Training Network (Grant No. PITN-GA2008-213841)National Basic Research Program of China (973 Program, No. 2007CB814906)
文摘In this paper, we deal with a class of one-dimensional backward doubly stochastic differential equations (BDSDEs). We obtain a generalized comparison theorem and a generalized existence theorem of BDSDEs.
基金supported by the Young Scholar Award for Doctoral Students of the Ministry of Education of China, the Marie Curie Initial Training Network(PITN-GA-2008-213841)the National Basic Research Program of China(973 Program,No.2007CB814904)+3 种基金the National Natural Science Foundations of China(No.10921101)Shandong Province(No.2008BS01024)the Science Fund for Distinguished Young Scholars of Shandong Province(No.JQ200801)Shandong University(No.2009JQ004)
文摘In this paper, we deal with one dimensional backward doubly stochastic differential equations (BDSDEs). We obtain a comparison theorem and a uniqueness theorem for BDSDEs with continuous coefficients.
基金supported by National Natural Science Foundation of China (Grant No.10961012)Natural Sciences and Engineering Research Council of Canada (Grant No. 311945-2008)
文摘Nakao's stochastic integrals for continuous additive functionals of zero energy are extended from the symmetric Dirichlet forms setting to the non-symmetric Dirichlet forms setting. ItS's formula in terms of the extended stochastic integrals is obtained.
基金Supported by the National Natural Science Foundation of China(Nos.11371226,11071145,11301298,11201268 and 11231005)Foundation for Innovative Research Groups of National Natural Science Foundation of China(No.11221061)+1 种基金the 111 Project(No.B12023)Natural Science Foundation of Shandong Province of China(ZR2012AQ013)
文摘In this work the existence of solutions of one-dimensional backward doubly stochastic differential equations (BDSDEs) with coefficients left-Lipschitz in y (may be discontinuous) and Lipschitz in z is studied. Also, the associated comparison theorem is obtained.