We present a simulation run allocation scheme for improving efficiency in simulation experiments for decision making under uncertainty. This scheme is called Optimal Computing Budget Allocation (OCBA). OCBA advances t...We present a simulation run allocation scheme for improving efficiency in simulation experiments for decision making under uncertainty. This scheme is called Optimal Computing Budget Allocation (OCBA). OCBA advances the state-of-the-art by intelligently allocating a computing budget to the candidate alternatives under evaluation. The basic idea is to spend less computational effort on simulating non-critical alternatives to save computation cost. In particular, OCBA is employed to intelligently provide the smallest number of simulation runs for a desired accuracy. In this paper, we present a new and more general OCBA scheme which can consider cases that users are interested not only the best design, but also any one in a good design set. In addition, this paper also presents the application of our OCBA to a design problem in US air traffic management. The national air traffic system in US is modeled as a large, complex, and stochastic network. The numerical examples show that the computation time can be reduced by 54% to 88% with the use of OCBA.展开更多
This paper presents a model that can aid planners in defining the total allowable pollutant discharge in the planning region, accounting for the dynamic and stochastic character of meteorological conditions. This is a...This paper presents a model that can aid planners in defining the total allowable pollutant discharge in the planning region, accounting for the dynamic and stochastic character of meteorological conditions. This is accomplished by integrating Monte Carlo simulation and using genetic algorithm to solve the model. The model is demonstrated by using a realistic air urban scale SO 2 control problem in the Yuxi City of China. To evaluate effectiveness of the model, results of the approach are shown to compare with those of the linear deterministic procedures. This paper also provides a valuable insight into how air quality targets should be made when the air pollutant will not threat the residents' health. Finally, a discussion of the areas for further research are briefly delineated.展开更多
文摘We present a simulation run allocation scheme for improving efficiency in simulation experiments for decision making under uncertainty. This scheme is called Optimal Computing Budget Allocation (OCBA). OCBA advances the state-of-the-art by intelligently allocating a computing budget to the candidate alternatives under evaluation. The basic idea is to spend less computational effort on simulating non-critical alternatives to save computation cost. In particular, OCBA is employed to intelligently provide the smallest number of simulation runs for a desired accuracy. In this paper, we present a new and more general OCBA scheme which can consider cases that users are interested not only the best design, but also any one in a good design set. In addition, this paper also presents the application of our OCBA to a design problem in US air traffic management. The national air traffic system in US is modeled as a large, complex, and stochastic network. The numerical examples show that the computation time can be reduced by 54% to 88% with the use of OCBA.
文摘This paper presents a model that can aid planners in defining the total allowable pollutant discharge in the planning region, accounting for the dynamic and stochastic character of meteorological conditions. This is accomplished by integrating Monte Carlo simulation and using genetic algorithm to solve the model. The model is demonstrated by using a realistic air urban scale SO 2 control problem in the Yuxi City of China. To evaluate effectiveness of the model, results of the approach are shown to compare with those of the linear deterministic procedures. This paper also provides a valuable insight into how air quality targets should be made when the air pollutant will not threat the residents' health. Finally, a discussion of the areas for further research are briefly delineated.