This paper builds the structure of the vector autoregression( SVAR) model short-term constraints and studies the interactive mechanism of investor sentiment,monetary policy and stock market from 2008 to 2016. The resu...This paper builds the structure of the vector autoregression( SVAR) model short-term constraints and studies the interactive mechanism of investor sentiment,monetary policy and stock market from 2008 to 2016. The result finds that investor sentiment, currency liquidity and stock market gains a significant asymmetric effect. First,the interaction effects of investor sentiment and stock market are positive feedback mechanism, and investor sentiment significantly affects the stock market in the short term. Furthermore,monetary policy and stock market has a positive role in promoting each other. Finally, investor sentiment shows negative feedback mechanism of monetary policy.展开更多
The rapid growth of social networks has produced an unprecedented amount of user-generated data, which provides an excellent opportunity for text mining. Sentiment analysis, an important part of text mining, attempts ...The rapid growth of social networks has produced an unprecedented amount of user-generated data, which provides an excellent opportunity for text mining. Sentiment analysis, an important part of text mining, attempts to learn about the authors’ opinion on a text through its content and structure. Such information is particularly valuable for determining the overall opinion of a large number of people. Examples of the usefulness of this are predicting box office sales or stock prices. One of the most accessible sources of user-generated data is Twitter, which makes the majority of its user data freely available through its data access API. In this study we seek to predict a sentiment value for stock related tweets on Twitter, and demonstrate a correlation between this sentiment and the movement of a company’s stock price in a real time streaming environment. Both n-gram and “word2vec” textual representation techniques are used alongside a random forest classification algorithm to predict the sentiment of tweets. These values are then evaluated for correlation between stock prices and Twitter sentiment for that each company. There are significant correlations between price and sentiment for several individual companies. Some companies such as Microsoft and Walmart show strong positive correlation, while others such as Goldman Sachs and Cisco Systems show strong negative correlation. This suggests that consumer facing companies are affected differently than other companies. Overall this appears to be a promising field for future research.展开更多
Some research work has showed that public mood and stock market price have some relations in some degree. Although it is difficult to clear the relation, the research about the relation between stock market price and ...Some research work has showed that public mood and stock market price have some relations in some degree. Although it is difficult to clear the relation, the research about the relation between stock market price and public mood is interested by some scientists. This paper tries to find the relationship between Chinese stock market and Chinese local Microblog. First, C-POMS(Chinese Profile of Mood States) was proposed to analyze sentiment of Microblog feeds. Then Granger causality test confirmed the relation between C-POMS analysis and price series. SVM and Probabilistic Neural Network were used to make prediction, and experiments show that SVM is better to predict stock market movements than Probabilistic Neural Network. Experiments also indicate that adding certain dimension of C-POMS as the input data will improve the prediction accuracy to 66.667%. Two dimensions to input data leads to the highest accuracy of 71.429%, which is about 20% higher than using only history stock data as the input data. This paper also compared the proposed method with the ROSTEA scores, and concluded that only the proposed method brings more accurate predicts.展开更多
文摘This paper builds the structure of the vector autoregression( SVAR) model short-term constraints and studies the interactive mechanism of investor sentiment,monetary policy and stock market from 2008 to 2016. The result finds that investor sentiment, currency liquidity and stock market gains a significant asymmetric effect. First,the interaction effects of investor sentiment and stock market are positive feedback mechanism, and investor sentiment significantly affects the stock market in the short term. Furthermore,monetary policy and stock market has a positive role in promoting each other. Finally, investor sentiment shows negative feedback mechanism of monetary policy.
文摘The rapid growth of social networks has produced an unprecedented amount of user-generated data, which provides an excellent opportunity for text mining. Sentiment analysis, an important part of text mining, attempts to learn about the authors’ opinion on a text through its content and structure. Such information is particularly valuable for determining the overall opinion of a large number of people. Examples of the usefulness of this are predicting box office sales or stock prices. One of the most accessible sources of user-generated data is Twitter, which makes the majority of its user data freely available through its data access API. In this study we seek to predict a sentiment value for stock related tweets on Twitter, and demonstrate a correlation between this sentiment and the movement of a company’s stock price in a real time streaming environment. Both n-gram and “word2vec” textual representation techniques are used alongside a random forest classification algorithm to predict the sentiment of tweets. These values are then evaluated for correlation between stock prices and Twitter sentiment for that each company. There are significant correlations between price and sentiment for several individual companies. Some companies such as Microsoft and Walmart show strong positive correlation, while others such as Goldman Sachs and Cisco Systems show strong negative correlation. This suggests that consumer facing companies are affected differently than other companies. Overall this appears to be a promising field for future research.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2015AA050204)
文摘Some research work has showed that public mood and stock market price have some relations in some degree. Although it is difficult to clear the relation, the research about the relation between stock market price and public mood is interested by some scientists. This paper tries to find the relationship between Chinese stock market and Chinese local Microblog. First, C-POMS(Chinese Profile of Mood States) was proposed to analyze sentiment of Microblog feeds. Then Granger causality test confirmed the relation between C-POMS analysis and price series. SVM and Probabilistic Neural Network were used to make prediction, and experiments show that SVM is better to predict stock market movements than Probabilistic Neural Network. Experiments also indicate that adding certain dimension of C-POMS as the input data will improve the prediction accuracy to 66.667%. Two dimensions to input data leads to the highest accuracy of 71.429%, which is about 20% higher than using only history stock data as the input data. This paper also compared the proposed method with the ROSTEA scores, and concluded that only the proposed method brings more accurate predicts.