In stock market forecasting,the identification of critical features that affect the performance of machine learning(ML)models is crucial to achieve accurate stock price predictions.Several review papers in the literat...In stock market forecasting,the identification of critical features that affect the performance of machine learning(ML)models is crucial to achieve accurate stock price predictions.Several review papers in the literature have focused on various ML,statistical,and deep learning-based methods used in stock market forecasting.However,no survey study has explored feature selection and extraction techniques for stock market forecasting.This survey presents a detailed analysis of 32 research works that use a combination of feature study and ML approaches in various stock market applications.We conduct a systematic search for articles in the Scopus and Web of Science databases for the years 2011–2022.We review a variety of feature selection and feature extraction approaches that have been successfully applied in the stock market analyses presented in the articles.We also describe the combination of feature analysis techniques and ML methods and evaluate their performance.Moreover,we present other survey articles,stock market input and output data,and analyses based on various factors.We find that correlation criteria,random forest,principal component analysis,and autoencoder are the most widely used feature selection and extraction techniques with the best prediction accuracy for various stock market applications.展开更多
This paper examines the forecasting performance of different kinds of GARCH model (GRACH, EGARCH, TARCH and APARCH) under the Normal, Student-t and Generalized error distributional assumption. We compare the effect ...This paper examines the forecasting performance of different kinds of GARCH model (GRACH, EGARCH, TARCH and APARCH) under the Normal, Student-t and Generalized error distributional assumption. We compare the effect of different distributional assumption on the GARCH models. The data we analyze are the daily stocks indexes for Shenzhen Stock Exchange (SSE) in China from April 3^rd, 1991 to April 14^th, 2005. We find that improvements of the overall estimation are achieved when asymmetric GARCH models are used with student-t distribution and generalized error distribution. Moreover, it is found that TARCH and GARCH models give better forecasting performance than EGARCH and APARCH models. In forecasting performance, the model under normal distribution gives more accurate forecasting performance than non-normal densities and generalized error distributions clearly outperform the student-t densities in case of SSE.展开更多
Stocks that are fundamentally connected with each other tend to move together.Considering such common trends is believed to benefit stock movement forecasting tasks.However,such signals are not trivial to model becaus...Stocks that are fundamentally connected with each other tend to move together.Considering such common trends is believed to benefit stock movement forecasting tasks.However,such signals are not trivial to model because the connections among stocks are not physically presented and need to be estimated from volatile data.Motivated by this observation,we propose a framework that incorporates the inter-connection of firms to forecast stock prices.To effectively utilize a large set of fundamental features,we further design a novel pipeline.First,we use variational autoencoder(VAE)to reduce the dimension of stock fundamental information and then cluster stocks into a graph structure(fundamentally clustering).Second,a hybrid model of graph convolutional network and long-short term memory network(GCN-LSTM)with an adjacency graph matrix(learnt from VAE)is proposed for graph-structured stock market forecasting.Experiments on minute-level U.S.stock market data demonstrate that our model effectively captures both spatial and temporal signals and achieves superior improvement over baseline methods.The proposed model is promising for other applications in which there is a possible but hidden spatial dependency to improve time-series prediction.展开更多
Accurate forecasting of changes in stock market indices can provide financial managers and individual investors with strategically valuable information.However,predicting the closing prices of stock indices remains a ...Accurate forecasting of changes in stock market indices can provide financial managers and individual investors with strategically valuable information.However,predicting the closing prices of stock indices remains a challenging task because stock price movements are characterized by high volatility and nonlinearity.This paper proposes a novel condensed polynomial neural network(CPNN)for the task of forecasting stock closing price indices.We developed a model that uses partial descriptions(PDs)and is limited to only two layers for the PNN architecture.The outputs of these PDs along with the original features are fed to a single output neuron,and the synaptic weight values and biases of the CPNN are optimized by a genetic algorithm.The proposed model was evaluated by predicting the next day’s closing price of five fast-growing stock indices:the BSE,DJIA,NASDAQ,FTSE,and TAIEX.In comparative testing,the proposed model proved its ability to provide closing price predictions with superior accuracy.Further,the Deibold-Mariano test justified the statistical significance of the model,establishing that this approach can be adopted as a competent financial forecasting tool.展开更多
Accurate prediction of stock market behavior is a challenging issue for financial forecasting.Artificial neural networks,such as multilayer perceptron have been established as better approximation and classification m...Accurate prediction of stock market behavior is a challenging issue for financial forecasting.Artificial neural networks,such as multilayer perceptron have been established as better approximation and classification models for this domain.This study proposes a chemical reaction optimization(CRO)based neuro-fuzzy network model for prediction of stock indices.The input vectors to the model are fuzzified by applying a Gaussian membership function,and each input is associated with a degree of membership to different classes.A multilayer perceptron with one hidden layer is used as the base model and CRO is used to the optimal weights and biases of this model.CRO was chosen because it requires fewer control parameters and has a faster convergence rate.Five statistical parameters are used to evaluate the performance of the model,and the model is validated by forecasting the daily closing indices for five major stock markets.The performance of the proposed model is compared with four state-of-art models that are trained similarly and was found to be superior.We conducted the Deibold-Mariano test to check the statistical significance of the proposed model,and it was found to be significant.This model can be used as a promising tool for financial forecasting.展开更多
The decomposition-based vector autoregressive model (DVAR) provides a new framework for scrutinizing the efficiency of technical analysis in forecasting stock returns. However, its relation- ships with other technic...The decomposition-based vector autoregressive model (DVAR) provides a new framework for scrutinizing the efficiency of technical analysis in forecasting stock returns. However, its relation- ships with other technical indicators still remain unknown. This paper investigates the relationships of DVAR model with the Japanese Candlestick indicators using simulations, theoretical explanations and empirical studies. The main finding of this paper is that both lower and upper shadows in Japanese Candlestick Granger contribute to the DVAR model explanation power, and thus, providing useful information for improving the DVAR forecasts. This finding makes sense as it means that the infor- mation contained in the lower and upper shadows should be used when modeling the stock returns with DVAR. Empirical studies performed on China SSEC stock index demonstrate that DVAR model with upper and lower shadows as exogenous variables does have informative and valuable out-of-sample forecasts.展开更多
基金funded by The University of Groningen and Prospect Burma organization.
文摘In stock market forecasting,the identification of critical features that affect the performance of machine learning(ML)models is crucial to achieve accurate stock price predictions.Several review papers in the literature have focused on various ML,statistical,and deep learning-based methods used in stock market forecasting.However,no survey study has explored feature selection and extraction techniques for stock market forecasting.This survey presents a detailed analysis of 32 research works that use a combination of feature study and ML approaches in various stock market applications.We conduct a systematic search for articles in the Scopus and Web of Science databases for the years 2011–2022.We review a variety of feature selection and feature extraction approaches that have been successfully applied in the stock market analyses presented in the articles.We also describe the combination of feature analysis techniques and ML methods and evaluate their performance.Moreover,we present other survey articles,stock market input and output data,and analyses based on various factors.We find that correlation criteria,random forest,principal component analysis,and autoencoder are the most widely used feature selection and extraction techniques with the best prediction accuracy for various stock market applications.
文摘This paper examines the forecasting performance of different kinds of GARCH model (GRACH, EGARCH, TARCH and APARCH) under the Normal, Student-t and Generalized error distributional assumption. We compare the effect of different distributional assumption on the GARCH models. The data we analyze are the daily stocks indexes for Shenzhen Stock Exchange (SSE) in China from April 3^rd, 1991 to April 14^th, 2005. We find that improvements of the overall estimation are achieved when asymmetric GARCH models are used with student-t distribution and generalized error distribution. Moreover, it is found that TARCH and GARCH models give better forecasting performance than EGARCH and APARCH models. In forecasting performance, the model under normal distribution gives more accurate forecasting performance than non-normal densities and generalized error distributions clearly outperform the student-t densities in case of SSE.
文摘Stocks that are fundamentally connected with each other tend to move together.Considering such common trends is believed to benefit stock movement forecasting tasks.However,such signals are not trivial to model because the connections among stocks are not physically presented and need to be estimated from volatile data.Motivated by this observation,we propose a framework that incorporates the inter-connection of firms to forecast stock prices.To effectively utilize a large set of fundamental features,we further design a novel pipeline.First,we use variational autoencoder(VAE)to reduce the dimension of stock fundamental information and then cluster stocks into a graph structure(fundamentally clustering).Second,a hybrid model of graph convolutional network and long-short term memory network(GCN-LSTM)with an adjacency graph matrix(learnt from VAE)is proposed for graph-structured stock market forecasting.Experiments on minute-level U.S.stock market data demonstrate that our model effectively captures both spatial and temporal signals and achieves superior improvement over baseline methods.The proposed model is promising for other applications in which there is a possible but hidden spatial dependency to improve time-series prediction.
文摘Accurate forecasting of changes in stock market indices can provide financial managers and individual investors with strategically valuable information.However,predicting the closing prices of stock indices remains a challenging task because stock price movements are characterized by high volatility and nonlinearity.This paper proposes a novel condensed polynomial neural network(CPNN)for the task of forecasting stock closing price indices.We developed a model that uses partial descriptions(PDs)and is limited to only two layers for the PNN architecture.The outputs of these PDs along with the original features are fed to a single output neuron,and the synaptic weight values and biases of the CPNN are optimized by a genetic algorithm.The proposed model was evaluated by predicting the next day’s closing price of five fast-growing stock indices:the BSE,DJIA,NASDAQ,FTSE,and TAIEX.In comparative testing,the proposed model proved its ability to provide closing price predictions with superior accuracy.Further,the Deibold-Mariano test justified the statistical significance of the model,establishing that this approach can be adopted as a competent financial forecasting tool.
文摘Accurate prediction of stock market behavior is a challenging issue for financial forecasting.Artificial neural networks,such as multilayer perceptron have been established as better approximation and classification models for this domain.This study proposes a chemical reaction optimization(CRO)based neuro-fuzzy network model for prediction of stock indices.The input vectors to the model are fuzzified by applying a Gaussian membership function,and each input is associated with a degree of membership to different classes.A multilayer perceptron with one hidden layer is used as the base model and CRO is used to the optimal weights and biases of this model.CRO was chosen because it requires fewer control parameters and has a faster convergence rate.Five statistical parameters are used to evaluate the performance of the model,and the model is validated by forecasting the daily closing indices for five major stock markets.The performance of the proposed model is compared with four state-of-art models that are trained similarly and was found to be superior.We conducted the Deibold-Mariano test to check the statistical significance of the proposed model,and it was found to be significant.This model can be used as a promising tool for financial forecasting.
基金supported by the National Natural Science Foundation of China under Grant No.71401033
文摘The decomposition-based vector autoregressive model (DVAR) provides a new framework for scrutinizing the efficiency of technical analysis in forecasting stock returns. However, its relation- ships with other technical indicators still remain unknown. This paper investigates the relationships of DVAR model with the Japanese Candlestick indicators using simulations, theoretical explanations and empirical studies. The main finding of this paper is that both lower and upper shadows in Japanese Candlestick Granger contribute to the DVAR model explanation power, and thus, providing useful information for improving the DVAR forecasts. This finding makes sense as it means that the infor- mation contained in the lower and upper shadows should be used when modeling the stock returns with DVAR. Empirical studies performed on China SSEC stock index demonstrate that DVAR model with upper and lower shadows as exogenous variables does have informative and valuable out-of-sample forecasts.