This paper discusses a fictitious domain method for the linear Dirichlet problem and its applications to the generalized Stokes problem. This method treats Dirichlet boundary condit ion via a Lagrange multiplier tec...This paper discusses a fictitious domain method for the linear Dirichlet problem and its applications to the generalized Stokes problem. This method treats Dirichlet boundary condit ion via a Lagrange multiplier technique and is well suited to the no-slip bound ary condition in viscous flow problems. In order to improve the accuracy of solu tions, meshes are refined according to the a posteriori error estimate. The mini -element discretization is applied to solve the generalized Stokes problem. Fin ally, some numerical results to validate this method are presented for partial d ifferential equations with Dirichlet boundary condition.展开更多
In this paper, we use divergence-free wavelets to give an adaptive solution to the velocity field of the Stokes problem. We first use divergence-free wavelets to discretize the divergence-free weak formulation of the ...In this paper, we use divergence-free wavelets to give an adaptive solution to the velocity field of the Stokes problem. We first use divergence-free wavelets to discretize the divergence-free weak formulation of the Stokes problem and obtain a discrete positive definite linear system of equations whose coefficient matrix is quasi-sparse; Secondly, an adaptive scheme is used to solve the discrete linear system of equations and the error estimation and complexity analysis are given.展开更多
In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique ...In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique is first to use a standard finite element discretization on a coarse mesh to approximate low frequencies, then to apply the simple and Newton scheme to linearize discretizations on a fine grid. At this process, multiscale finite element method as a stabilized method deals with the lowest equal-order finite element pairs not satisfying the inf-sup condition. Under the uniqueness condition, error analyses for both algorithms are given. Numerical results are reported to demonstrate the effectiveness of the simple and Newton scheme.展开更多
In this paper, a locking-free nonconforming rectangular finite element scheme is presented for the planar elasticity problem with pure displacement boundary condition. Meanwhile, we prove that this element is also con...In this paper, a locking-free nonconforming rectangular finite element scheme is presented for the planar elasticity problem with pure displacement boundary condition. Meanwhile, we prove that this element is also convergent for stationary Stokes problem.展开更多
Mixed element formats of any order based on bubble functions for the stationary Stokes problem are derived in triangular and tetrahedral meshes and the convergence of these formats are proved.
Two simplifled and stabilized mixed element formats for the Stokes problem are derived by bubble function, and their convergence, i.e., error analysis, are proved. These formats can save more freedom degrees than othe...Two simplifled and stabilized mixed element formats for the Stokes problem are derived by bubble function, and their convergence, i.e., error analysis, are proved. These formats can save more freedom degrees than other usual formats.展开更多
Composite penalty method of a low order anisotropic nonconforming quadrilateral finite element for the Stokes problem is presented. This method with a large penalty parameter can achieve the same accuracy as the stand...Composite penalty method of a low order anisotropic nonconforming quadrilateral finite element for the Stokes problem is presented. This method with a large penalty parameter can achieve the same accuracy as the stand method with a small penalty parameter and the convergence rate of this method is two times as that of the standard method under the condition of the same order penalty parameter. The superconvergence for velocity is established as well. The results of this paper are also valid to the most of the known nonconforming finite element methods.展开更多
A nonconforming rectangular finite element is presented, which satisfies the discrete B-B condition for the Stokes problem. And the element has two order convergence rate for the velocity and pressure.
Based on the auxiliary subspace techniques,a posteriori error estimator of nonconforming weak Galerkin finite element method(WGFEM)for Stokes problem in two and three dimensions is presented.Without saturation assumpt...Based on the auxiliary subspace techniques,a posteriori error estimator of nonconforming weak Galerkin finite element method(WGFEM)for Stokes problem in two and three dimensions is presented.Without saturation assumption,we prove that the WGFEM approximation error is bounded by the error estimator up to an oscillation term.The computational cost of the approximation and the error problems is considered in terms of size and sparsity of the system matrix.To reduce the computational cost of the error problem,an equivalent error problem is constructed by using diagonalization techniques,which needs to solve only two diagonal linear algebraic systems corresponding to the degree of freedom(d.o.f)to get the error estimator.Numerical experiments are provided to demonstrate the effectiveness and robustness of the a posteriori error estimator.展开更多
This paper deals with the design and analysis of adaptive wavelet method for the Stokes problem. First, the limitation of Richardson iteration is explained and the multiplied matrix M0 in the paper of Bramble and Pasc...This paper deals with the design and analysis of adaptive wavelet method for the Stokes problem. First, the limitation of Richardson iteration is explained and the multiplied matrix M0 in the paper of Bramble and Pasciak is proved to be the simplest possible in an appropiate sense. Similar to the divergence operator, an exact application of its dual is shown; Second, based on these above observations, an adaptive wavelet algorithm for the Stokes problem is designed. Error analysis and computational complexity are given; Finally, since our algorithm is mainly to deal with an elliptic and positive definite operator equation, the last section is devoted to the Galerkin solution of an elliptic and positive definite equation. It turns out that the upper bound for error estimation may be improved.展开更多
Based on the low-order conforming finite element subspace (Vh, Mh) such as the P1-P0 triangle element or the Q1-P0 quadrilateral element, the locally stabilized finite element method for the Stokes problem with nonl...Based on the low-order conforming finite element subspace (Vh, Mh) such as the P1-P0 triangle element or the Q1-P0 quadrilateral element, the locally stabilized finite element method for the Stokes problem with nonlinear slip boundary conditions is investigated in this paper. For this class of nonlinear slip boundary conditions including the subdifferential property, the weak variational formulation associated with the Stokes problem is an variational inequality. Since (Vh, Mh) does not satisfy the discrete inf-sup conditions, a macroelement condition is introduced for constructing the locally stabilized formulation such that the stability of (Vh, Mh) is established. Under these conditions, we obtain the H1 and L2 error estimates for the numerical solutions.展开更多
The main aim of this paper is to study the convergence properties of a low order mixed finite element for the Stokes problem under anisotropic meshes. We discuss the anisotropic convergence and superconvergence indepe...The main aim of this paper is to study the convergence properties of a low order mixed finite element for the Stokes problem under anisotropic meshes. We discuss the anisotropic convergence and superconvergence independent of the aspect ratio. Without the shape regularity assumption and inverse assumption on the meshes, the optimal error estimates and natural superconvergence at central points are obtained. The global superconvergence for the gradient of the velocity and the pressure is derived with the aid of a suitable postprocessing method. Furthermore, we develop a simple method to obtain the superclose properties which improves the results of the previous works .展开更多
A nonoverlapping domain decomposition iterative procedure is developed and analyzed for generalized Stokes problems and their finite element approximate problems in R^N(N=2,3). The method is based on a mixed-type co...A nonoverlapping domain decomposition iterative procedure is developed and analyzed for generalized Stokes problems and their finite element approximate problems in R^N(N=2,3). The method is based on a mixed-type consistency condition with two parameters as a transmission condition together with a derivative-free transmission data updating technique on the artificial interfaces. The method can be applied to a general multi-subdomain decomposition and implemented on parallel machines with local simple communications naturally.展开更多
Finite volume element method for the Stokes problem is considered. We use a conforming piecewise linear function on a fine grid for velocity and piecewise constant element on a coarse grid for pressure. For general tr...Finite volume element method for the Stokes problem is considered. We use a conforming piecewise linear function on a fine grid for velocity and piecewise constant element on a coarse grid for pressure. For general triangulation we prove the equivalence of the finite volume element method and a saddle-point problem, the inf-sup condition and the uniqueness of the approximation solution. We also give the optimal order H^1 norm error estimate. For two widely used dual meshes we give the L^2 norm error estimates, which is optimal in one case and quasi-optimal in another ease. Finally we give a numerical example.展开更多
In this paper, the fundamental solution of rotating generalized Stokes problem in R^3 is established. To obtain it, some fundamental solutions of other problems also are established, such as generalized Laplace proble...In this paper, the fundamental solution of rotating generalized Stokes problem in R^3 is established. To obtain it, some fundamental solutions of other problems also are established, such as generalized Laplace problem, generalized Stokes problem and rotating Stokes problem.展开更多
We construct a finite volume element method based on the constrained nonconforming rotated Q_(1)-constant element(CNRQ_(1)-P_(0))for the Stokes problem.Two meshes are needed,which are the primal mesh and the dual mesh...We construct a finite volume element method based on the constrained nonconforming rotated Q_(1)-constant element(CNRQ_(1)-P_(0))for the Stokes problem.Two meshes are needed,which are the primal mesh and the dual mesh.We approximate the velocity by CNRQ_(1)elements and the pressure by piecewise constants.The errors for the velocity in the H^(1)norm and for the pressure in the L^(2)norm are O(h)and the error for the velocity in the L^(2)norm is O(h^(2)).Numerical experiments are presented to support our theoretical results.展开更多
The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact ana...The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions of velocity and stress are obtained by using the discrete Laplace transform of the sequential fractional derivative and the Fox H-function. The obtained results indicate that some well known solutions for the Newtonian fluid, the generalized second grade fluid as well as the ordinary Oldroyd-B fluid, as limiting cases, are included in our solutions.展开更多
In this paper, a new discrete formulation and a type of new posteriori error estimators for the second-order element discretization for Stokes problems are presented, where pressure is approximated with piecewise fir...In this paper, a new discrete formulation and a type of new posteriori error estimators for the second-order element discretization for Stokes problems are presented, where pressure is approximated with piecewise first-degree polynomials and velocity vector field with piecewise second-degree polynomials with a cubic bubble function to be added. The estimators are the globally upper and locally lower bounds for the error of the finite element discretization. It is shown that the bubble part for this second-order element approximation is substituted for the other parts of the approximate solution.展开更多
The start-up process of Stokes' second problem of a viscoelastic material with fractional element is studied. The fluid above an infinite flat plane is set in motion by a sudden acceleration of the plate to steady os...The start-up process of Stokes' second problem of a viscoelastic material with fractional element is studied. The fluid above an infinite flat plane is set in motion by a sudden acceleration of the plate to steady oscillation. Exact solutions are obtained by using Laplace transform and Fourier transform. It is found that the relationship between the first peak value and the one of equal-amplitude oscillations depends on the distance from the plate. The amplitude decreases for increasing frequency and increasing distance.展开更多
In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The co...In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The convergence of this new stabilized method is proved and the optimal priori error estimates for the eigenfunctions and eigenvalues are also obtained.Moreover,we combine this new stabilized finite element method with the two-level method to give a new two-level stabilized finite element method for the Stokes eigenvalue problem.Furthermore,we have proved a priori error estimates for this new two-level stabilized method.Finally,numerical examples confirm our theoretical analysis and validate the high effectiveness of the new methods.展开更多
文摘This paper discusses a fictitious domain method for the linear Dirichlet problem and its applications to the generalized Stokes problem. This method treats Dirichlet boundary condit ion via a Lagrange multiplier technique and is well suited to the no-slip bound ary condition in viscous flow problems. In order to improve the accuracy of solu tions, meshes are refined according to the a posteriori error estimate. The mini -element discretization is applied to solve the generalized Stokes problem. Fin ally, some numerical results to validate this method are presented for partial d ifferential equations with Dirichlet boundary condition.
文摘In this paper, we use divergence-free wavelets to give an adaptive solution to the velocity field of the Stokes problem. We first use divergence-free wavelets to discretize the divergence-free weak formulation of the Stokes problem and obtain a discrete positive definite linear system of equations whose coefficient matrix is quasi-sparse; Secondly, an adaptive scheme is used to solve the discrete linear system of equations and the error estimation and complexity analysis are given.
文摘In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique is first to use a standard finite element discretization on a coarse mesh to approximate low frequencies, then to apply the simple and Newton scheme to linearize discretizations on a fine grid. At this process, multiscale finite element method as a stabilized method deals with the lowest equal-order finite element pairs not satisfying the inf-sup condition. Under the uniqueness condition, error analyses for both algorithms are given. Numerical results are reported to demonstrate the effectiveness of the simple and Newton scheme.
文摘In this paper, a locking-free nonconforming rectangular finite element scheme is presented for the planar elasticity problem with pure displacement boundary condition. Meanwhile, we prove that this element is also convergent for stationary Stokes problem.
基金Supported by National Natural Science Foundation of China(11371331)Supported by the Natural Science Foundation of Education Department of Henan Province(14B110018)
文摘Mixed element formats of any order based on bubble functions for the stationary Stokes problem are derived in triangular and tetrahedral meshes and the convergence of these formats are proved.
文摘Two simplifled and stabilized mixed element formats for the Stokes problem are derived by bubble function, and their convergence, i.e., error analysis, are proved. These formats can save more freedom degrees than other usual formats.
基金Supported by the National Natural Science Foundation of China (10791203, 11271340)the Natural Science Foundation of Henan Province (112300410109)
文摘Composite penalty method of a low order anisotropic nonconforming quadrilateral finite element for the Stokes problem is presented. This method with a large penalty parameter can achieve the same accuracy as the stand method with a small penalty parameter and the convergence rate of this method is two times as that of the standard method under the condition of the same order penalty parameter. The superconvergence for velocity is established as well. The results of this paper are also valid to the most of the known nonconforming finite element methods.
基金Foundation item: Supported by the National Natural Science Foundation of China(10771198, 10590353) Supported by the Doctor Foundation(2008BS013) Supported by the Natural Science Foundation of Henan Province (682300410200)
文摘A nonconforming rectangular finite element is presented, which satisfies the discrete B-B condition for the Stokes problem. And the element has two order convergence rate for the velocity and pressure.
基金the Natural Science Foundation of Jiangsu Province(No.BK20210540)the Natural Science Foundation of The Jiangsu Higher Education Institutions of China(No.21KJB110015)the National Key Research and Development Program of China(grant no.2020YFA0713601).
文摘Based on the auxiliary subspace techniques,a posteriori error estimator of nonconforming weak Galerkin finite element method(WGFEM)for Stokes problem in two and three dimensions is presented.Without saturation assumption,we prove that the WGFEM approximation error is bounded by the error estimator up to an oscillation term.The computational cost of the approximation and the error problems is considered in terms of size and sparsity of the system matrix.To reduce the computational cost of the error problem,an equivalent error problem is constructed by using diagonalization techniques,which needs to solve only two diagonal linear algebraic systems corresponding to the degree of freedom(d.o.f)to get the error estimator.Numerical experiments are provided to demonstrate the effectiveness and robustness of the a posteriori error estimator.
基金Supported by the Natural Science Foundation of Beijing(No.1082003).
文摘This paper deals with the design and analysis of adaptive wavelet method for the Stokes problem. First, the limitation of Richardson iteration is explained and the multiplied matrix M0 in the paper of Bramble and Pasciak is proved to be the simplest possible in an appropiate sense. Similar to the divergence operator, an exact application of its dual is shown; Second, based on these above observations, an adaptive wavelet algorithm for the Stokes problem is designed. Error analysis and computational complexity are given; Finally, since our algorithm is mainly to deal with an elliptic and positive definite operator equation, the last section is devoted to the Galerkin solution of an elliptic and positive definite equation. It turns out that the upper bound for error estimation may be improved.
基金supported by the National Natural Science Foundation of China(10901122)Zhejiang Provincial Natural Science Foundation (Y6090108)supported by the National Natural Science Foundation of China(10971165)
文摘Based on the low-order conforming finite element subspace (Vh, Mh) such as the P1-P0 triangle element or the Q1-P0 quadrilateral element, the locally stabilized finite element method for the Stokes problem with nonlinear slip boundary conditions is investigated in this paper. For this class of nonlinear slip boundary conditions including the subdifferential property, the weak variational formulation associated with the Stokes problem is an variational inequality. Since (Vh, Mh) does not satisfy the discrete inf-sup conditions, a macroelement condition is introduced for constructing the locally stabilized formulation such that the stability of (Vh, Mh) is established. Under these conditions, we obtain the H1 and L2 error estimates for the numerical solutions.
基金the National Natural Science Foundation of China under the grant 10771198
文摘The main aim of this paper is to study the convergence properties of a low order mixed finite element for the Stokes problem under anisotropic meshes. We discuss the anisotropic convergence and superconvergence independent of the aspect ratio. Without the shape regularity assumption and inverse assumption on the meshes, the optimal error estimates and natural superconvergence at central points are obtained. The global superconvergence for the gradient of the velocity and the pressure is derived with the aid of a suitable postprocessing method. Furthermore, we develop a simple method to obtain the superclose properties which improves the results of the previous works .
文摘A nonoverlapping domain decomposition iterative procedure is developed and analyzed for generalized Stokes problems and their finite element approximate problems in R^N(N=2,3). The method is based on a mixed-type consistency condition with two parameters as a transmission condition together with a derivative-free transmission data updating technique on the artificial interfaces. The method can be applied to a general multi-subdomain decomposition and implemented on parallel machines with local simple communications naturally.
基金Supported by the Natural Science Foundation of China (No.10471079, 10071044) and the Research Fund of Doctoral Program of High Education by State Education Ministry of China.
文摘Finite volume element method for the Stokes problem is considered. We use a conforming piecewise linear function on a fine grid for velocity and piecewise constant element on a coarse grid for pressure. For general triangulation we prove the equivalence of the finite volume element method and a saddle-point problem, the inf-sup condition and the uniqueness of the approximation solution. We also give the optimal order H^1 norm error estimate. For two widely used dual meshes we give the L^2 norm error estimates, which is optimal in one case and quasi-optimal in another ease. Finally we give a numerical example.
基金Supported by the National Natural Science Foundation of China (No. 10571142)
文摘In this paper, the fundamental solution of rotating generalized Stokes problem in R^3 is established. To obtain it, some fundamental solutions of other problems also are established, such as generalized Laplace problem, generalized Stokes problem and rotating Stokes problem.
基金This work is supported by the “985”program of Jilin University and the National Natural Science Foundation of China(NO.10971082).
文摘We construct a finite volume element method based on the constrained nonconforming rotated Q_(1)-constant element(CNRQ_(1)-P_(0))for the Stokes problem.Two meshes are needed,which are the primal mesh and the dual mesh.We approximate the velocity by CNRQ_(1)elements and the pressure by piecewise constants.The errors for the velocity in the H^(1)norm and for the pressure in the L^(2)norm are O(h)and the error for the velocity in the L^(2)norm is O(h^(2)).Numerical experiments are presented to support our theoretical results.
基金The project supported by the National Natural Science Foundation of China(10272067)the Doctoral Program Foundation of the Education Ministry of China(20030422046)+1 种基金the Natural Science Foundation of Shandong Province,China(Y2006A 14)the Research Foundation of Shandong University at Weihai.
文摘The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions of velocity and stress are obtained by using the discrete Laplace transform of the sequential fractional derivative and the Fox H-function. The obtained results indicate that some well known solutions for the Newtonian fluid, the generalized second grade fluid as well as the ordinary Oldroyd-B fluid, as limiting cases, are included in our solutions.
基金the National Natural Science Foundation of China, the Evolvement Plan of Science and Technology of Beijing Educational Council,
文摘In this paper, a new discrete formulation and a type of new posteriori error estimators for the second-order element discretization for Stokes problems are presented, where pressure is approximated with piecewise first-degree polynomials and velocity vector field with piecewise second-degree polynomials with a cubic bubble function to be added. The estimators are the globally upper and locally lower bounds for the error of the finite element discretization. It is shown that the bubble part for this second-order element approximation is substituted for the other parts of the approximate solution.
文摘The start-up process of Stokes' second problem of a viscoelastic material with fractional element is studied. The fluid above an infinite flat plane is set in motion by a sudden acceleration of the plate to steady oscillation. Exact solutions are obtained by using Laplace transform and Fourier transform. It is found that the relationship between the first peak value and the one of equal-amplitude oscillations depends on the distance from the plate. The amplitude decreases for increasing frequency and increasing distance.
基金supported by the National Key R&D Program of China(2018YFB1501001)the NSF of China(11771348)China Postdoctoral Science Foundation(2019M653579)。
文摘In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The convergence of this new stabilized method is proved and the optimal priori error estimates for the eigenfunctions and eigenvalues are also obtained.Moreover,we combine this new stabilized finite element method with the two-level method to give a new two-level stabilized finite element method for the Stokes eigenvalue problem.Furthermore,we have proved a priori error estimates for this new two-level stabilized method.Finally,numerical examples confirm our theoretical analysis and validate the high effectiveness of the new methods.