By introducing the wave-induced Coriolis-Stokes forcing into ageostrophic motion equation, th1 Eulerian transport is modified by the wave-induced Stokes drift. The long-term mean contributions of the Stokes transport ...By introducing the wave-induced Coriolis-Stokes forcing into ageostrophic motion equation, th1 Eulerian transport is modified by the wave-induced Stokes drift. The long-term mean contributions of the Stokes transport with remotely generated swells being included to the ageostrophic transport are analyzed using the ECMWF (European Centre for Medium-Range X,Veather Forecasts) reanalysis data. The ratio of Stokes transport to Ekman transport in north-south (N-S) direction can reach maximum of over 50% in the subtropical region. The preliminary influence of the Stokes transport on the North Pacific gyre is all year persistent, while the effect on the North Atlantic gyre is only obvious in boreal winter and early spring.展开更多
The wave Coriolis-Stokes-Force-modified ocean momentum equations are reviewed in this paper and the wave Stokes transport is pointed out to be part of the ocean circulations. Using the European Centre for Medium-Range...The wave Coriolis-Stokes-Force-modified ocean momentum equations are reviewed in this paper and the wave Stokes transport is pointed out to be part of the ocean circulations. Using the European Centre for Medium-Range Weather Forecasts 40-year reanalysis data(ERA-40 data) and the Simple Ocean Data Assimilation(SODA) version 2.2.4 data, the magnitude of this transport is compared with that of wind-driven Sverdrup transport and a 5-to-10-precent contribution by the wave Stokes transport is found. Both transports are stronger in boreal winter than in summers. The wave effect can be either contribution or cancellation in different seasons. Examination with Kuroshio transport verifies similar seasonal variations. The clarification of the efficient wave boundary condition helps to understand the role of waves in mass transport. It acts as surface wind stress and can be functional down to the bottom of the ageostrophic layer. The pumping velocities resulting from wave-induced stress are zonally distributed and are significant in relatively high latitudes. Further work will focus on the model performance of the wave-stress-changed-boundary and the role of swells in the eastern part of the oceans.展开更多
Wave climate analysis and other applications for the Pacific Ocean require a reliable wave hindcast. Five source and sink term packages in the Wavewatch III model (v3.14 and v4.18) are compared and assessed in this ...Wave climate analysis and other applications for the Pacific Ocean require a reliable wave hindcast. Five source and sink term packages in the Wavewatch III model (v3.14 and v4.18) are compared and assessed in this study through comprehensive observations, including altimeter significant wave height, advanced synthetic aperture radar swell, and buoy wave parameters and spectrum. In addition to the evaluation of typically used integral parameters, the spectra partitioning method contributes to the detailed wave system and wave maturity validation. The modified performance evaluation method (PS) effectively reduces attribute numbers and facilitates the overall assessment. To avoid possible misleading results in the root mean square error-based validations, another indicator called HH (indicating the two authors) is also calculated to guarantee the consistency of the results. The widely used Tolman and Chalikov (TC) package is still generally efficient in determining the integral properties of wave spectra but is physically deficient in explaining the dissipation processes. The ST4 package performs well in overall wave parameters and significantly improves the accuracy of wave systems in the open ocean. Meanwhile, the newly published ST6 package is slightly better in determining swell energy variations. The two packages (ACC350 and BIA) obtained from Wavewatch III v3.14 exhibit large scatters at different sea states. The three most ideal packages are further examined in terms of reproducing wave- induced momentum flux from the perspective of transport. Stokes transport analysis indicates that ST4 is the closest to the NDBC-buoy-spectrum-based transport values, and TC and ST6 tend to overestimate and underestimate the transport magnitude, respectively, in swell mixed areas. This difference must be considered, particularly in air-wave-current coupling research and upper ocean analysis. The assessment results provide guidance for the selection of ST4 for use in a background Pacific Ocean hindcast for high wave climate research and China Sea swell type analysis.展开更多
基金The National Natural Science Foundation of China under contract Nos 40976005 and 40930844
文摘By introducing the wave-induced Coriolis-Stokes forcing into ageostrophic motion equation, th1 Eulerian transport is modified by the wave-induced Stokes drift. The long-term mean contributions of the Stokes transport with remotely generated swells being included to the ageostrophic transport are analyzed using the ECMWF (European Centre for Medium-Range X,Veather Forecasts) reanalysis data. The ratio of Stokes transport to Ekman transport in north-south (N-S) direction can reach maximum of over 50% in the subtropical region. The preliminary influence of the Stokes transport on the North Pacific gyre is all year persistent, while the effect on the North Atlantic gyre is only obvious in boreal winter and early spring.
基金funded by the National Science Foundation of China (40976005 and 40930844)
文摘The wave Coriolis-Stokes-Force-modified ocean momentum equations are reviewed in this paper and the wave Stokes transport is pointed out to be part of the ocean circulations. Using the European Centre for Medium-Range Weather Forecasts 40-year reanalysis data(ERA-40 data) and the Simple Ocean Data Assimilation(SODA) version 2.2.4 data, the magnitude of this transport is compared with that of wind-driven Sverdrup transport and a 5-to-10-precent contribution by the wave Stokes transport is found. Both transports are stronger in boreal winter than in summers. The wave effect can be either contribution or cancellation in different seasons. Examination with Kuroshio transport verifies similar seasonal variations. The clarification of the efficient wave boundary condition helps to understand the role of waves in mass transport. It acts as surface wind stress and can be functional down to the bottom of the ageostrophic layer. The pumping velocities resulting from wave-induced stress are zonally distributed and are significant in relatively high latitudes. Further work will focus on the model performance of the wave-stress-changed-boundary and the role of swells in the eastern part of the oceans.
基金The National High Technology Research and Development Program(863 Program) of China under contract No.2013AA122803the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010104
文摘Wave climate analysis and other applications for the Pacific Ocean require a reliable wave hindcast. Five source and sink term packages in the Wavewatch III model (v3.14 and v4.18) are compared and assessed in this study through comprehensive observations, including altimeter significant wave height, advanced synthetic aperture radar swell, and buoy wave parameters and spectrum. In addition to the evaluation of typically used integral parameters, the spectra partitioning method contributes to the detailed wave system and wave maturity validation. The modified performance evaluation method (PS) effectively reduces attribute numbers and facilitates the overall assessment. To avoid possible misleading results in the root mean square error-based validations, another indicator called HH (indicating the two authors) is also calculated to guarantee the consistency of the results. The widely used Tolman and Chalikov (TC) package is still generally efficient in determining the integral properties of wave spectra but is physically deficient in explaining the dissipation processes. The ST4 package performs well in overall wave parameters and significantly improves the accuracy of wave systems in the open ocean. Meanwhile, the newly published ST6 package is slightly better in determining swell energy variations. The two packages (ACC350 and BIA) obtained from Wavewatch III v3.14 exhibit large scatters at different sea states. The three most ideal packages are further examined in terms of reproducing wave- induced momentum flux from the perspective of transport. Stokes transport analysis indicates that ST4 is the closest to the NDBC-buoy-spectrum-based transport values, and TC and ST6 tend to overestimate and underestimate the transport magnitude, respectively, in swell mixed areas. This difference must be considered, particularly in air-wave-current coupling research and upper ocean analysis. The assessment results provide guidance for the selection of ST4 for use in a background Pacific Ocean hindcast for high wave climate research and China Sea swell type analysis.