Measurement of plasma electron density by far-infrared laser polarimetry has become a routine and indispensable tool in magnetic confinement fusion research.This article presents the design of a Cotton-Mouton polarime...Measurement of plasma electron density by far-infrared laser polarimetry has become a routine and indispensable tool in magnetic confinement fusion research.This article presents the design of a Cotton-Mouton polarimeter interferometer,which provides a reliable density measurement without fringe jumps.Cotton-Mouton effect on Experimental Advanced Superconducting Tokamak(EAST)is studied by Stokes equation with three parameters(s_(1),s_(2),s_(3)).It demonstrates that under the condition of a small Cotton-Mouton effect,parameter s_(2)contains information about Cotton-Mouton effect which is proportional to the line-integrated density.For a typical EAST plasma,the magnitude of Cotton-Mouton effects is less than 2πfor laser wavelength of 432μm.Refractive effect due to density gradient is calculated to be negligible.Time modulation of Stokes parameters(s_(2),s_(3))provides heterodyne measurement.Due to the instabilities arising from laser oscillation and beam refraction in plasmas,it is necessary for the system to be insensitive to variations in the amplitude of the detection signal.Furthermore,it is shown that non-equal amplitude of X-mode and O-mode within a certain range only affects the DC offset of Stokes parameters(s_(2),s_(3))but does not greatly influence the phase measurements of Cotton-Mouton effects.展开更多
Usually the polarization of the interference and the target backscattering may vary constantly, so the optimal receiving polarization of the polarization filter should be recalculated, which makes the filter realizati...Usually the polarization of the interference and the target backscattering may vary constantly, so the optimal receiving polarization of the polarization filter should be recalculated, which makes the filter realization very difficult. Also the predict method of the necessary parameters is not explained in most papers, which makes the polarization filter realization impossible. A novel modi- fied interference suppression (MIS) polarization filter is proposed, which resolves these problems by a new polarization designed strategy. The computation of this polarization filter is easy in most conditions, and the necessary parameters estimation method in real time is introduced, which makes polarization filter design possible.展开更多
Obtaining polarization information enables researchers to enhance underwater imaging quality by removing backscattering effect and to distinguish targets of different materials.However,due to the simplified assumption...Obtaining polarization information enables researchers to enhance underwater imaging quality by removing backscattering effect and to distinguish targets of different materials.However,due to the simplified assumption of unpolarized target light,most of the existing underwater polari-metric methods lose part of the polarization information,resulting in degraded imaging quality.In this work,a novel underwater polarimetric method is reported,which obtains the angle of polariza-tion(AOP)map to improve imaging quality.Specifically,the Stokes vectors were exploited to re-move the backscattering effect by obtaining two pairs of orthogonal polarization sub-images of the underwater scene.The target reflected light and the angle between the polarization directions of the target reflected light and the backscattered light were computed through the two groups of the or-thogonal polarized sub-images.The AOP map of the target light could be derived from the Stokes vectors.Then,the transmission map of the target light was estimated by using the non-local color priorly combined with the properties of light propagating underwater.Experiments show that the reported technique enables distinguishing different targets when the colors are similar.The quantit-ative metrics validate that the reported technique produces state-of-the-art performance for under-water imaging.展开更多
The statistical properties of the normalized Stokes parameters in a Gaussian stochastic plane wave field are described in detail. Via the expression of the three normalized Stokes parameters, the mean, variance, and h...The statistical properties of the normalized Stokes parameters in a Gaussian stochastic plane wave field are described in detail. Via the expression of the three normalized Stokes parameters, the mean, variance, and high-order moments are calculated, which simplify C. Brosseau's results. The new dispersion, normalized contrast function, skewness, and kurtosis are defined to describe the non-Gaussian distribution characteristics, which can be applied to Gaussian wave fields relating to depolarization of light by a spatially random medium.展开更多
The original vector discrete ordinate radiative transfer(VDISORT)model takes into account Stokes radiance vector but derives its solution assuming azimuthal symmetric surface reflective matrix and atmospheric scatteri...The original vector discrete ordinate radiative transfer(VDISORT)model takes into account Stokes radiance vector but derives its solution assuming azimuthal symmetric surface reflective matrix and atmospheric scattering phase matrix,such as the phase matrix derived from spherical particles or randomly oriented non-spherical particles.In this study,a new VDISORT is developed for general atmospheric scattering and boundary conditions.Stokes vector is decomposed into both sinusoidal and cosinusoidal harmonic modes,and the radiance at arbitrary viewing geometry is solved directly by adding two zero-weighted points in the Gaussian quadrature scheme.The complex eigenvalues in homogeneous solutions are also taken into full consideration.The accuracy of VDISORT model is comprehensively validated by four cases:Rayleigh scattering case,the spherical particle scattering case with the Legendre expansion coefficients of 0th-13th orders of the phase matrix(hereinafter L13),L13 with a polarized source,and the randomoriented oblate particle scattering case with the Legendre expansion coefficients of 0th-11th orders of the phase matrix(hereinafter L11).In all cases,the simulated radiances agree well with the benchmarks,with absolute biases less than 0.0065,0.0006,and 0.0008 for Rayleigh,unpolarized L13,and L11,respectively.Since a polarized bidirectional reflection distribution function(pBRDF)matrix is used as the lower boundary condition,VDISORT is now able to handle fully coupled atmospheric and surface polarimetric radiative transfer processes.展开更多
The problem of statistical description of instantaneous polarization of electromagnetic waves is studied. First, the physical meanings of instantaneous Stokes vectors components are analyzed, which provide a short cut...The problem of statistical description of instantaneous polarization of electromagnetic waves is studied. First, the physical meanings of instantaneous Stokes vectors components are analyzed, which provide a short cut for solving statistical distribution functions of instantaneous Stokes vectors. Second, in the condition of Gaussian hypothesis, the analytical expressions of probability density function (PDF) of instantaneous Stokes vectors are presented. Finally, some computation results are presented in the condition of two independent polarization channels, which show the validity and simplicity of the statistical description method.展开更多
Measurement of optical properties of skin is an expanding and growing field of research.Recent studies have shown that the biological tissue,especially skin,changes the polarization state of the incident light.Using t...Measurement of optical properties of skin is an expanding and growing field of research.Recent studies have shown that the biological tissue,especially skin,changes the polarization state of the incident light.Using this property will enable the study of abnormalities and diseases that alter not only the light intensity but also its polarization state.In this paper we report an experimental study for measuring changes of polarization state of the light scattered from a phantom similar to a sample model of scattering skin.Using the notation of Stokes vector for the polarized light and Mueller matrix for the sample with its polarization properties,we have shown that some elements of the matrix were particularly sensitive to the changes of the polarization-altering physical properties of the scatterers within the phantom.展开更多
Conventionally, the polarization of a synchrotron soft X-ray beam is measured through a polarimeter based on multilayer optical elements. The major drawback of the traditional approach is the difficulty in comparing d...Conventionally, the polarization of a synchrotron soft X-ray beam is measured through a polarimeter based on multilayer optical elements. The major drawback of the traditional approach is the difficulty in comparing different configurations due to the misalignment of each incident angle. In this paper, a new analytical model, based on the variation of reflectivity for different incident angles, is established to facilitate the extraction of important polarization-related information, i.e. angular distribution of polarization components, a tiny change of the direction of azimuth rotation axis of polarizer, etc.展开更多
基金financially supported by National Natural Science Foundation of China(No.12127809)。
文摘Measurement of plasma electron density by far-infrared laser polarimetry has become a routine and indispensable tool in magnetic confinement fusion research.This article presents the design of a Cotton-Mouton polarimeter interferometer,which provides a reliable density measurement without fringe jumps.Cotton-Mouton effect on Experimental Advanced Superconducting Tokamak(EAST)is studied by Stokes equation with three parameters(s_(1),s_(2),s_(3)).It demonstrates that under the condition of a small Cotton-Mouton effect,parameter s_(2)contains information about Cotton-Mouton effect which is proportional to the line-integrated density.For a typical EAST plasma,the magnitude of Cotton-Mouton effects is less than 2πfor laser wavelength of 432μm.Refractive effect due to density gradient is calculated to be negligible.Time modulation of Stokes parameters(s_(2),s_(3))provides heterodyne measurement.Due to the instabilities arising from laser oscillation and beam refraction in plasmas,it is necessary for the system to be insensitive to variations in the amplitude of the detection signal.Furthermore,it is shown that non-equal amplitude of X-mode and O-mode within a certain range only affects the DC offset of Stokes parameters(s_(2),s_(3))but does not greatly influence the phase measurements of Cotton-Mouton effects.
基金supported by the National Natural Science Foundation of China (60736001)
文摘Usually the polarization of the interference and the target backscattering may vary constantly, so the optimal receiving polarization of the polarization filter should be recalculated, which makes the filter realization very difficult. Also the predict method of the necessary parameters is not explained in most papers, which makes the polarization filter realization impossible. A novel modi- fied interference suppression (MIS) polarization filter is proposed, which resolves these problems by a new polarization designed strategy. The computation of this polarization filter is easy in most conditions, and the necessary parameters estimation method in real time is introduced, which makes polarization filter design possible.
基金supported by the National Natural Science Foundation of China(No.61991451)Graduate Interdisciplinary In-novation Project of Yangtze Delta Region Academy of Beijing Institute of Technology(Jiaxing)(GIIP2021-016).
文摘Obtaining polarization information enables researchers to enhance underwater imaging quality by removing backscattering effect and to distinguish targets of different materials.However,due to the simplified assumption of unpolarized target light,most of the existing underwater polari-metric methods lose part of the polarization information,resulting in degraded imaging quality.In this work,a novel underwater polarimetric method is reported,which obtains the angle of polariza-tion(AOP)map to improve imaging quality.Specifically,the Stokes vectors were exploited to re-move the backscattering effect by obtaining two pairs of orthogonal polarization sub-images of the underwater scene.The target reflected light and the angle between the polarization directions of the target reflected light and the backscattered light were computed through the two groups of the or-thogonal polarized sub-images.The AOP map of the target light could be derived from the Stokes vectors.Then,the transmission map of the target light was estimated by using the non-local color priorly combined with the properties of light propagating underwater.Experiments show that the reported technique enables distinguishing different targets when the colors are similar.The quantit-ative metrics validate that the reported technique produces state-of-the-art performance for under-water imaging.
基金National Excellent PhD Paper Funds Supporting (Grant No.08100101)the New Century Excellent Talent Plan in China (Grant No.NCET-04-0997)
文摘The statistical properties of the normalized Stokes parameters in a Gaussian stochastic plane wave field are described in detail. Via the expression of the three normalized Stokes parameters, the mean, variance, and high-order moments are calculated, which simplify C. Brosseau's results. The new dispersion, normalized contrast function, skewness, and kurtosis are defined to describe the non-Gaussian distribution characteristics, which can be applied to Gaussian wave fields relating to depolarization of light by a spatially random medium.
基金Supported by the Natural Science Program of China(U2142212)Natural Science Foundation of Hunan Province(2021JC0009)National Key Research and Development Program of China(2022YFC3004200)。
文摘The original vector discrete ordinate radiative transfer(VDISORT)model takes into account Stokes radiance vector but derives its solution assuming azimuthal symmetric surface reflective matrix and atmospheric scattering phase matrix,such as the phase matrix derived from spherical particles or randomly oriented non-spherical particles.In this study,a new VDISORT is developed for general atmospheric scattering and boundary conditions.Stokes vector is decomposed into both sinusoidal and cosinusoidal harmonic modes,and the radiance at arbitrary viewing geometry is solved directly by adding two zero-weighted points in the Gaussian quadrature scheme.The complex eigenvalues in homogeneous solutions are also taken into full consideration.The accuracy of VDISORT model is comprehensively validated by four cases:Rayleigh scattering case,the spherical particle scattering case with the Legendre expansion coefficients of 0th-13th orders of the phase matrix(hereinafter L13),L13 with a polarized source,and the randomoriented oblate particle scattering case with the Legendre expansion coefficients of 0th-11th orders of the phase matrix(hereinafter L11).In all cases,the simulated radiances agree well with the benchmarks,with absolute biases less than 0.0065,0.0006,and 0.0008 for Rayleigh,unpolarized L13,and L11,respectively.Since a polarized bidirectional reflection distribution function(pBRDF)matrix is used as the lower boundary condition,VDISORT is now able to handle fully coupled atmospheric and surface polarimetric radiative transfer processes.
文摘The problem of statistical description of instantaneous polarization of electromagnetic waves is studied. First, the physical meanings of instantaneous Stokes vectors components are analyzed, which provide a short cut for solving statistical distribution functions of instantaneous Stokes vectors. Second, in the condition of Gaussian hypothesis, the analytical expressions of probability density function (PDF) of instantaneous Stokes vectors are presented. Finally, some computation results are presented in the condition of two independent polarization channels, which show the validity and simplicity of the statistical description method.
文摘Measurement of optical properties of skin is an expanding and growing field of research.Recent studies have shown that the biological tissue,especially skin,changes the polarization state of the incident light.Using this property will enable the study of abnormalities and diseases that alter not only the light intensity but also its polarization state.In this paper we report an experimental study for measuring changes of polarization state of the light scattered from a phantom similar to a sample model of scattering skin.Using the notation of Stokes vector for the polarized light and Mueller matrix for the sample with its polarization properties,we have shown that some elements of the matrix were particularly sensitive to the changes of the polarization-altering physical properties of the scatterers within the phantom.
基金Supported by National Natural Science Foundation of China (11075176)
文摘Conventionally, the polarization of a synchrotron soft X-ray beam is measured through a polarimeter based on multilayer optical elements. The major drawback of the traditional approach is the difficulty in comparing different configurations due to the misalignment of each incident angle. In this paper, a new analytical model, based on the variation of reflectivity for different incident angles, is established to facilitate the extraction of important polarization-related information, i.e. angular distribution of polarization components, a tiny change of the direction of azimuth rotation axis of polarizer, etc.