The work deals with a mathematical model for real-time acoustic monitoring of material parameters of media in multi-state viscoelastic engineering systems continuously operating in irregular external environments (e.g...The work deals with a mathematical model for real-time acoustic monitoring of material parameters of media in multi-state viscoelastic engineering systems continuously operating in irregular external environments (e.g., wind turbines in cold climate areas, aircrafts, etc.). This monitoring is a high-reliability time-critical task. The work consistently derives a scalar wave PDE of the Stokes type for the non-equilibrium part (NEP) of the average normal stress in a medium. The explicit expression for the NEP of the corresponding pressure and the solution-adequateness condition are also obtained. The derived Stokes-type wave equation includes the stress relaxation time and is applicable to gases, liquids, and solids.展开更多
An extended form of Boussinesq-type equations with improved nonlinearity is presented for the water wave propagation and transformation in coastal areas. To improve the nonlinearity of lower order Boussinesq-type equa...An extended form of Boussinesq-type equations with improved nonlinearity is presented for the water wave propagation and transformation in coastal areas. To improve the nonlinearity of lower order Boussinesq-type equations,without including higher order derivative terms, an extended form of Boussinesq-type equations is derived by a generalized method. The Stokes-type analysis of the extended equations shows that the accuracy of the second order and third order nonlinear characteristics is improved greatly. The numerical test is also carried out to investigate the practical performance of the new equations under different wave conditions. Better agreement with experimental data is found in the regions of strong nonlinear wave-wave interaction and harmonic generation.展开更多
文摘The work deals with a mathematical model for real-time acoustic monitoring of material parameters of media in multi-state viscoelastic engineering systems continuously operating in irregular external environments (e.g., wind turbines in cold climate areas, aircrafts, etc.). This monitoring is a high-reliability time-critical task. The work consistently derives a scalar wave PDE of the Stokes type for the non-equilibrium part (NEP) of the average normal stress in a medium. The explicit expression for the NEP of the corresponding pressure and the solution-adequateness condition are also obtained. The derived Stokes-type wave equation includes the stress relaxation time and is applicable to gases, liquids, and solids.
基金Project supported by the National Key Technology Su-pport Program(Grant No.2010BAC68B04)
文摘An extended form of Boussinesq-type equations with improved nonlinearity is presented for the water wave propagation and transformation in coastal areas. To improve the nonlinearity of lower order Boussinesq-type equations,without including higher order derivative terms, an extended form of Boussinesq-type equations is derived by a generalized method. The Stokes-type analysis of the extended equations shows that the accuracy of the second order and third order nonlinear characteristics is improved greatly. The numerical test is also carried out to investigate the practical performance of the new equations under different wave conditions. Better agreement with experimental data is found in the regions of strong nonlinear wave-wave interaction and harmonic generation.