Higson have introduced the conception of "Higson’s corona" (see [1]). For a given metric space X, it is a kind of compactification of X related to the metric d on it. Denote by BR(X) the set {y ∈ X\d(x,y) ...Higson have introduced the conception of "Higson’s corona" (see [1]). For a given metric space X, it is a kind of compactification of X related to the metric d on it. Denote by BR(X) the set {y ∈ X\d(x,y) < R}. Recall that a slowly oscillating function on X is a function f G C*(X) satisfying the following condition:展开更多
Necessary and sufficient conditions are studied that a bounded operator Tx =(x1^*x, x2^*x,…) on the space e∞, where xn^*∈e∞^*, is lower or upper semi-Fredholm; in particular, topological properties of the se...Necessary and sufficient conditions are studied that a bounded operator Tx =(x1^*x, x2^*x,…) on the space e∞, where xn^*∈e∞^*, is lower or upper semi-Fredholm; in particular, topological properties of the set {x1^*, x2^* …} are investigated. Various estimates of the defect d(T) = codim R(T), where R(T) is the range of T, are given. The case of xn^* = dnxtn^*,where dn ∈ R and xtn^* 〉 0 are extreme points of the unit ball Be∞^*, that is, tn ∈ βN, is considered. In terms of the sequence {tn}, the conditions of the closedness of the range R(T) are given and the value d(T) is calculated. For example, the condition {n : 0 〈 |da| 〈 δ}= θ for some 5 is sufficient and if for large n points tn are isolated elements of the sequence {tn}, then it is also necessary for the closedness of R(T) (tn0 is isolated if there is a neighborhood U of tno satisfying tn ∈ U for all n ≠ n0). If {n : |dn| 〈 δ} = θ, then d(T) is equal to the defect δ{tn} of {tn}. It is shown that if d(T) = ∞ and R(T) is closed, then there exists a sequence {An} of pairwise disjoint subsets of N satisfying XAn ∈ R(T).展开更多
By means of a characterization of compact spaces in terms of open CD*-filters induced by a , a - and open CD*-filters process of compactifications of an arbitrary topological space Y is obtained in Sec. 3 by embedding...By means of a characterization of compact spaces in terms of open CD*-filters induced by a , a - and open CD*-filters process of compactifications of an arbitrary topological space Y is obtained in Sec. 3 by embedding Y as a dense subspace of , YS = {ε |ε is an open CD*-filter that does not converge in Y}, YT = {A|A is a basic open CD*-filter that does not converge in Y}, is the topology induced by the base B = {U*|U is open in Y, U ≠φ} and U* = {F∈Ysw (or YTw)|U∈F}. Furthermore, an arbitrary Hausdorff compactification (Z, h) of a Tychonoff space X?can be obtained from a by the?similar process in Sec.3.展开更多
Closed and basic closed C*D-filters are used in a process similar to Wallman method for compactifications of the topological spaces Y, of which, there is a subset of C*(Y) containing a non-constant function, where C*(...Closed and basic closed C*D-filters are used in a process similar to Wallman method for compactifications of the topological spaces Y, of which, there is a subset of C*(Y) containing a non-constant function, where C*(Y) is the set of bounded real continuous functions on Y. An arbitrary Hausdorff compactification (Z,h) of a Tychonoff space X can be obtained by using basic closed C*D-filters from in a similar way, where C(Z) is the set of real continuous functions on Z.展开更多
This paper characterizes ideal structure of the uniform Roe algebra B*(X) over simple cores X. A necessary and sufficient condition for a principal ideal of B*(X) to be spatial is given and an example of non-spatial i...This paper characterizes ideal structure of the uniform Roe algebra B*(X) over simple cores X. A necessary and sufficient condition for a principal ideal of B*(X) to be spatial is given and an example of non-spatial ideal of B*(X) is constructed. By establishing an one-one correspondence between the ideals of B* (X) and the ω-filters on X, the maximal ideals of B*(X) are completely described by the corona of the Stone-Cech compactification of X.展开更多
文摘Higson have introduced the conception of "Higson’s corona" (see [1]). For a given metric space X, it is a kind of compactification of X related to the metric d on it. Denote by BR(X) the set {y ∈ X\d(x,y) < R}. Recall that a slowly oscillating function on X is a function f G C*(X) satisfying the following condition:
文摘Necessary and sufficient conditions are studied that a bounded operator Tx =(x1^*x, x2^*x,…) on the space e∞, where xn^*∈e∞^*, is lower or upper semi-Fredholm; in particular, topological properties of the set {x1^*, x2^* …} are investigated. Various estimates of the defect d(T) = codim R(T), where R(T) is the range of T, are given. The case of xn^* = dnxtn^*,where dn ∈ R and xtn^* 〉 0 are extreme points of the unit ball Be∞^*, that is, tn ∈ βN, is considered. In terms of the sequence {tn}, the conditions of the closedness of the range R(T) are given and the value d(T) is calculated. For example, the condition {n : 0 〈 |da| 〈 δ}= θ for some 5 is sufficient and if for large n points tn are isolated elements of the sequence {tn}, then it is also necessary for the closedness of R(T) (tn0 is isolated if there is a neighborhood U of tno satisfying tn ∈ U for all n ≠ n0). If {n : |dn| 〈 δ} = θ, then d(T) is equal to the defect δ{tn} of {tn}. It is shown that if d(T) = ∞ and R(T) is closed, then there exists a sequence {An} of pairwise disjoint subsets of N satisfying XAn ∈ R(T).
文摘By means of a characterization of compact spaces in terms of open CD*-filters induced by a , a - and open CD*-filters process of compactifications of an arbitrary topological space Y is obtained in Sec. 3 by embedding Y as a dense subspace of , YS = {ε |ε is an open CD*-filter that does not converge in Y}, YT = {A|A is a basic open CD*-filter that does not converge in Y}, is the topology induced by the base B = {U*|U is open in Y, U ≠φ} and U* = {F∈Ysw (or YTw)|U∈F}. Furthermore, an arbitrary Hausdorff compactification (Z, h) of a Tychonoff space X?can be obtained from a by the?similar process in Sec.3.
文摘Closed and basic closed C*D-filters are used in a process similar to Wallman method for compactifications of the topological spaces Y, of which, there is a subset of C*(Y) containing a non-constant function, where C*(Y) is the set of bounded real continuous functions on Y. An arbitrary Hausdorff compactification (Z,h) of a Tychonoff space X can be obtained by using basic closed C*D-filters from in a similar way, where C(Z) is the set of real continuous functions on Z.
基金Project supported by the 973 Project of the Ministry of Science and Technology of China, the National Natural Science Foundation of China (No.10201007) the Doctoral Programme Foundation of the Ministry of Education of China and the Shanghai Science and
文摘This paper characterizes ideal structure of the uniform Roe algebra B*(X) over simple cores X. A necessary and sufficient condition for a principal ideal of B*(X) to be spatial is given and an example of non-spatial ideal of B*(X) is constructed. By establishing an one-one correspondence between the ideals of B* (X) and the ω-filters on X, the maximal ideals of B*(X) are completely described by the corona of the Stone-Cech compactification of X.