Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value,nondestructive testing methods are essential.This translates into the application of microscale rock mechanics experiments an...Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value,nondestructive testing methods are essential.This translates into the application of microscale rock mechanics experiments and scanning electron microscopy for surface composition analysis.This study explores the application of Machine Learning algorithms in predicting the mineralogical and mechanical properties of DHOFAR 1084,JAH 838,and NWA 11444 lunar meteorites based solely on their atomic percentage compositions.Leveraging a prior-data fitted network model,we achieved near-perfect classification scores for meteorites,mineral groups,and individual minerals.The regressor models,notably the KNeighbor model,provided an outstanding estimate of the mechanical properties—previously measured by nanoindentation tests—such as hardness,reduced Young’s modulus,and elastic recovery.Further considerations on the nature and physical properties of the minerals forming these meteorites,including porosity,crystal orientation,or shock degree,are essential for refining predictions.Our findings underscore the potential of Machine Learning in enhancing mineral identification and mechanical property estimation in lunar exploration,which pave the way for new advancements and quick assessments in extraterrestrial mineral mining,processing,and research.展开更多
Reported in this paper are the petrology and mineral chemistry of GRV 020090, the second Martian meteorite collected from the Grove Mountains, Antarctica. This meteorite, with a mass of 7.54 g, is completely covered b...Reported in this paper are the petrology and mineral chemistry of GRV 020090, the second Martian meteorite collected from the Grove Mountains, Antarctica. This meteorite, with a mass of 7.54 g, is completely covered by a black and glazy fusion crust. It has two distinct textural regions. The interstitial region is composed of euhedral grains of olivine, pigeonite, and anhedral interstitial maskelynite, with minor chromite, augite, phosphates and troilite. The poikilitic region consists of three clasts of pyroxenes, each of which has a pigeonite core and an augite rim. A few grains of subhedral to rounded olivine and euhedral chromite are enclosed in the pyroxene oikocrysts. GRV 020090 is classified as a new member of lherzolitic shergottites based on the modal composition and mineral chemistry. This work will shed light on the composition of Martian crust and magmatism on the Mars.展开更多
More than 50000 meteorite samples have been collected in Antarctica since 1969, making meteorite surveys a very important aspect of Antarctic expeditions. The Chinese National Antarctic Research Expedition has collect...More than 50000 meteorite samples have been collected in Antarctica since 1969, making meteorite surveys a very important aspect of Antarctic expeditions. The Chinese National Antarctic Research Expedition has collected more than 12000 meteorites in the Grove Mountains region, where has been confirmed as one of the richest meteorite concentration sites in Antarctica. China, therefore, possesses one of the world’s largest Antarctic meteorite collections and has made substantial contributions to this field of research. We summarize here the Chinese meteorite survey efforts in the Grove Mountains, as well as discuss progress of the classification and investigation of Grove Mountains meteorites. Outlooks are also proposed for the future of Antarctic meteorite work.展开更多
Meteorites provide an important window into the origins and evolution of the solar system. Since the first four meteorites were recovered in Grove Mountains, Antarctica, in 1998, a further total of 12665 meteorites ha...Meteorites provide an important window into the origins and evolution of the solar system. Since the first four meteorites were recovered in Grove Mountains, Antarctica, in 1998, a further total of 12665 meteorites have been collected over seven polar seasons in the Grove Mountains. All of these meteorites are owned and managed by the Chinese Antarctic Meteorite Depository (CAMD) at the Polar Research Institute of China (PRIC). In recent years, another 500 Antarctic meteorites have been classified and characterized based on mineralogy and petrology. In this work we examine four samples that have been identified as terrestrial, and a further 496 samples that have been confirmed as meteorites. These meteorites are further divided into different types:488 ordinary chondrites, one eucrite, one ureilite, one CM2 carbonaceous chondrite, one EH4 enstatite chondrite, one mesosiderite and three iron meteorites. The classification of meteorites not only provides an abundance of fundamental scientific data, but is also significant for introducing meteorites and related scientific knowledge to the publics particularly via the website of Chinese Resource-sharing Platform of Polar Samples for scientific research and education.展开更多
This paper reviews and summarizes the Chinese Antarctica meteorite search, classification and research. During the past four antarctic explorations, a total of 9834 meteorites were collected in the Grove Mountains reg...This paper reviews and summarizes the Chinese Antarctica meteorite search, classification and research. During the past four antarctic explorations, a total of 9834 meteorites were collected in the Grove Mountains region. Among them, 2431 meteorites were classified by the end of 2008. So far, 684 meteorites have been officially published in the Meteoritical Bulletin, Meteoritical Society, including 2 martian meteorites, 2 eucrites, 6 ureilites, 5 mesosiderites, 1 pallasite, 1 iron and 10 carbonaceous chondrites. Comprehensive studies were carried out on a number of these rare type meteorites. In addition, we propose to continue the meteorite searching project in Grove Mountains and other regions in Antarctica. We also suggest several key topics of the future researches on the Chinese Antarctic meteorites.展开更多
MIL090036 is a previously unknown meteorite (a feldspathic lunar breccia) that was discovered in Antarctica. The detailed petrography and mineralogy of this meteorite forms the subject of this paper. It has a typica...MIL090036 is a previously unknown meteorite (a feldspathic lunar breccia) that was discovered in Antarctica. The detailed petrography and mineralogy of this meteorite forms the subject of this paper. It has a typical clastic texture that consists of various types of rock debris (e.g. anorthosite, gabbroic anorthosite, gabbro, regolith breccia, troctolite, microporphyritic crystalline impact melt and compound clasts), mineral crystal fragments (e.g. pyroxenes, plagioclase, olivine and ilmenite) and feldspathic glass clasts. The ifne-grained recrystallized minerals and mineral clasts are cemented together in a glassy groundmass. The anorthite content of plagioclase in the gabbro (An81-83) and anorthosite (An88-93) both have relatively low calcium content compared to those from other breccias (An90-98). The pyroxene composition (Fs12-35 Wo3-44 En22-79) in the rock debris, crystal mineral clasts and anorthositic glass clasts are relatively iron-deifcient compared to those from gabbro debris with melt glass (Fs37-65 Wo10-29 En21-49) and groundmass (Fs18-69 Wo3-45 En14-50). In contrast, the pyroxene grains in the gabbroic anorthosite display a narrow compositional range (Fs24-27 Wo7-14 En59-69). Olivine grains in mineral fragments and the groundmass have a wider compositional range (Fo57-79) than those in the rock debris (Fo67-77). The Fe/Mn ratio in olivine is in the range of 47 to 83 (average 76) and 76 to 112 (average 73) in pyroxenes, and hence classify within the lunar ifeld. The characteristics of texture, mineral assemblage and compositions suggest that MIL090036 possibly originated from a region beyond that of the Apollo and Luna samples. Further study of MIL090036 is therefore likely to lead to a better understanding of the geological processes on the Moon and the chemical composition of the lunar crust.展开更多
Lunar meteorites are fragments of the Moon that escaped the gravity of the Moon following high-energy impacts by asteroids, subsequently fell to Earth. An inventory of 165 lunar meteorites has been developed since the...Lunar meteorites are fragments of the Moon that escaped the gravity of the Moon following high-energy impacts by asteroids, subsequently fell to Earth. An inventory of 165 lunar meteorites has been developed since the discovery and identification of the first lunar meteorite, ALHA 81005, in 1979. Although the Apollo samples are much heavier in mass than lunar meteorites, the meteorites are still an important sample supplement for scientific research on the composition and history of the Moon. Apart from a small amount of unbrecciated crystalline rocks, the majority of lunar meteorites are breccias that can be classified into three groups: highland feldspathic breccia, mare basaltic breccia, and mingled(including fledspathic and basaltic clasts) breccia. The petrography of lunar rocks suggests that there are a series of rock types of anorthosite, basalt, gabbro, troctolite, norite and KREEP in the Moon. Although KREEP is rare in lunar rocks, KREEP components have been found in the increasing number of lunar meteorites. KREEP provides important information on lunar magmatic evolution, e.g., the VHK KREEP clasts in SaU 169 may represent the pristine lunar magma (urKREEP). Six launching pairs of lunar meteorites have been proposed now, along with ten possible lunar launching sites. In addition, symplectite is often found in lunar basalts, which is a significant record of shock metamorphism on the lunar surface. Furthermore, isotopic ages and noble gases not only provide information on crystallization processes in lunar rocks and the formation of lunar crust, but also provide insight into shock events on the lunar surface.展开更多
GRV 90027 is a Martian lherzolitic shergottites (L-S) containing poikilitic, non-poikilitic, and melted pocket components. GRV 99027 is mainly composed of olive (55 vol% ) and pyroxene (37.5 vol% ), with minor m...GRV 90027 is a Martian lherzolitic shergottites (L-S) containing poikilitic, non-poikilitic, and melted pocket components. GRV 99027 is mainly composed of olive (55 vol% ) and pyroxene (37.5 vol% ), with minor maskelynite (6 vol% ) and chromite ( 1.5 vol% ), and trace whitelockite and troilite, ect. In this paper, the mineralogy and petrology of GRV 99027 are reported; in addition, the geochemical characteristics of the REEs and H isotopes in the GRV 99027 are also further investigated. The 2REE in GRV 99027 is relatively low; HREEs are enriched in olivine and pyroxene grains; LREEs are enriched in plagioclase with a high positive Eu anomaly. High EREE value is found in rare mineral whitlockite (less than 0. 2 vol% ), LREE ≈ HREE, and whitlockite has a negative Eu anomaly. The REE distribution patterns of the whole -rock of GRV 99027 is similar to but different from that of other L-S Martian meteorites, indicating that they came from different location of Mars. GRV 99027 has a high 8D value. Different water-bearing minerals give different contribution for 8D value. The 8D of phosphates generally does not correlate with water content, and 8D has a weak negative correlation with water content. GRV 99027 can be classified as an L-S Martian meteorite based on mineralogical assemblage patterns, REE distribution patterns, and hydrogen isotope. The isotope data of Sr, Nd, Pb, Os and REE from other L-S Martian meteorites were collected to discuss the formation history of the GRV 99027. Similar to other L-S Martian meteorites, GRV 99027 originated from part of Mar's mantle; during one strong impact event about 4M years ago, the meteorites were ejected from deep mantle into space, and traveled for a different duration in space (indicated by different cosmic exposure time), and captured by the Earth later in different time, ultimately falling on the Antarctica as L-S Martian meteorites.展开更多
Meteorites are the extraterrestrial rocks, which provide insights into the origin and evolution of the solar system. During the past half century, a great number of meteorites has been discovered on the Antarctic Ice ...Meteorites are the extraterrestrial rocks, which provide insights into the origin and evolution of the solar system. During the past half century, a great number of meteorites has been discovered on the Antarctic Ice Sheet, confirming that the Antarctica is the most important meteorite concentration area on the earth. Since the first four Antarctic meteorites were found in Grove Mountains in 1998, a total of 9834 meteorites have been collected by four subsequent expeditions. It opens a new field of meteorite study in China, and also accumulates a great deal of scientific samples for China. Recently, classification of Grove Mountains meteorites has been carried out for 6 years, and made following progresses : ( 1 ) 2433 meteorites, which include many special meteorites, e.g. Martian meteorites, ureilites and carbonaceous chondrites, have been classified. (2) the Antarctic meteorite curation and the sample sharing system are set up preliminarily. (3) the classification procedure, the management of meteorite samples, and the application procedure for the Antarctic meteorites are completed after the systematic classification during these years. (4) young generation researchers on meteorite are trained through the cooperation of many universities and institutes on meteorite classification.展开更多
Concentrations of Cr, Co, Ni, Cu, Ga, Ge, As, Sb, W, Re, Ir, Pt and Au of two ungrouped iron meteorites, Grove Mountains (GRV) 98003 from Antarctica and Ujimqin, were measured using instrumental neutron activation a...Concentrations of Cr, Co, Ni, Cu, Ga, Ge, As, Sb, W, Re, Ir, Pt and Au of two ungrouped iron meteorites, Grove Mountains (GRV) 98003 from Antarctica and Ujimqin, were measured using instrumental neutron activation analysis. According to the bulk chemistry, GRV 98003 is classified as a member of ⅠAB group, and Ujimqin as a unique one of ⅠAB iron meteorite complex. The elemental abundance pattern and correlation between elements (e. g. Ni-Au, Co-Au, As-Au, W- Au, Cu-Au, Sb-Au) of GRV 98003 are similar with those of NAW 468 (ⅠAB), but significantly depleted in refractory siderophile elements ( Re, It) and moderate volatile elements (Ca, Ge) relative to the latter. In addition, we reclassify Nantan (ⅢCD) as a member of ⅠAB main group (MG) and Yongning (ⅠA) as a unique iron meteorite related with IAB iron meteorite complex.展开更多
A space object exploded near the city of Chelyabinsk on February 15, 2013. Meteorite fragments reached the Earth’s surface, and accordingly we may consider this space object to have been a meteorite. However, this ev...A space object exploded near the city of Chelyabinsk on February 15, 2013. Meteorite fragments reached the Earth’s surface, and accordingly we may consider this space object to have been a meteorite. However, this event showed a number of features not corresponding to the destruction of a meteorite. The space object began to disintegrate at an altitude of 70 km when pressure (dynamical loads) on its front surface was ~6.7 × 103 N·m-2. The substance from the object’s surface was not blown off by drops, as at ablation, but was dumped by jets over a distance up to 1 km. The trail of this space object visually reminded us of a jet aircraft’s contrail, made up of water. But there is no enough water at altitudes of 30 - 70 km. It may be assumed that the object itself delivered water to these altitudes. The calculation of gas rise over the trail showed that the temperature in some parts of this trail was about 900 K. Heating of large masses of gas can be explained not only by the release of kinetic energy of the space object, but also by combustion processes of its substance. Thus, it was concluded that the meteorite could have been delivered by a comet.展开更多
1 Introduction The howardite,eucrite and diogenite(HED)meteorites are ultramafic and mafic igneous rocks and impact-engendered breccias derived from a thoroughly differentiated asteroid 4 Vesta.Diogenites include duni...1 Introduction The howardite,eucrite and diogenite(HED)meteorites are ultramafic and mafic igneous rocks and impact-engendered breccias derived from a thoroughly differentiated asteroid 4 Vesta.Diogenites include dunites,展开更多
At 21:45 hr (Beijing time ) on Oct. 31, 1990 the Yanzhuang meteorite hit the ground atthe Yanzhuang village, Wenyuan County, Guangdong Province. Several fragments, tota1ling 3. 5 kg,were recovered during the field sur...At 21:45 hr (Beijing time ) on Oct. 31, 1990 the Yanzhuang meteorite hit the ground atthe Yanzhuang village, Wenyuan County, Guangdong Province. Several fragments, tota1ling 3. 5 kg,were recovered during the field survey. This meteorite is a rare one of its kind due to its heavilyshocked features and thick veins made up of black molten materials.olivine and lowcalcium pyroxene are compositionally homogeneous with Fa= 18. 59, Fs= 16. 35and Wo = 1. 29. The chemica1 composition (total Fe=28. 0% ) and recrystallized texture of thechondritic mass show that the Yanzhuang is an H6 chondrite. The black molten materials occur inthe form of blocks (up to 2×3×4 cm in size) and veins (0.1 - 15 mm in width), and contain a lotof rounded and elliptic FeNi-FeS blobs (up to 6- 10 mm in length). The metal in these blobs exhib-its distinct dendritic str-ucture characteristic of rapid cooling. Unmolten and molten samples are verysimilar in chemical composition, fitting well with the average H-chondrites. Partial melting andFeNi/FeS-silicate separation have not been observed in the molten materials of the Yanzhuang.展开更多
This paper summarizes the challenges of identifying planetary-origin meteorites of non-igneous composition - particularly those of sedimentary origin.Evidence for putative sedimentary-origin (sedtype) meteorites and t...This paper summarizes the challenges of identifying planetary-origin meteorites of non-igneous composition - particularly those of sedimentary origin.Evidence for putative sedimentary-origin (sedtype) meteorites and their potential parent bodies is reviewed,suggesting that the list of candidate parent bodies for sed-type meteorites includes,but is not limited to,Mars,Enceladus,Ganymede,Europa,Ceres,Vesta,and other hypothetical planets that existed between the orbits of Mars and Jupiter in the past.The extraterrestrial origin and probable parent body for sed-type meteorites should be assessed based on multiple lines of evidence,and not solely limited to tests of oxygen and noble gas isotopes,whose signatures may undergo terrestrial contamination and which may exhibit significant heterogeneity within both the Solar System and parent cosmic bodies.The observed fall of a cosmic body,evidence of hypervelocity fall,signs of impact,presence of fusion crust,melting,and/or shock deformation features in impactor fragments should be considered as priority signs of meteoritic origin.展开更多
The Shenqiu meteorite was investigated by Mossbauer spectroscopy at room temperature, atomic absorption, X-ray diffraction and scanning electron microscopy. In order to determine fired conditions of the meteorite whic...The Shenqiu meteorite was investigated by Mossbauer spectroscopy at room temperature, atomic absorption, X-ray diffraction and scanning electron microscopy. In order to determine fired conditions of the meteorite which occurred during the meteorite fall, Shenqiu meteorite samples were fired in an oxidizing atmosphere and a reducing atmosphere at temperatures up to 1300℃, respectively. These samples also were fired at 800, 1000 and 1200 ℃ respectively for different time (up to 24 h).展开更多
We report here high-pressure investigations on Piplia Kalan eucrite-a member of HED (Howardite -Eucrite-Diogenite) family from asteroid 4-Vesta based on synchrotron X-ray diffraction (up to 16 GPa) and ^57Fe Mossb...We report here high-pressure investigations on Piplia Kalan eucrite-a member of HED (Howardite -Eucrite-Diogenite) family from asteroid 4-Vesta based on synchrotron X-ray diffraction (up to 16 GPa) and ^57Fe Mossbauer spectroscopy (up to 8 GPa). Dominant with anorthite-rich plagioclase, pigeonite-rich pyroxene and clino-ferrosilite, the sample displayed various phase transitions attaining amorphous character at 16 GPa. These phase transitions of individual components could be explained simultaneously through variations in high-pressure XRD patterns and the Mossbauer parameters. Most prominent P21/c to C2/c transition of pigeonite and ferrosilite was exhibited both as sudden variation in Mossbauer parameters and population inversion of Fe^2+ in M1 and M2 sites between 2.9 and 3.8 GPa and variation in intensity profile in XRD patterns at 3.56 GPa. Anorthite seemed to respond more to such impact than other components in the sample. Complete amorphization in anorthite which occurred at lower pressure of - 12 GPa implied residual stress experienced due to shock impact. The presence of high pressure (monoclinic) phase of pigeonite and ferrosilite at ambient condition in this eucrite sample confirmed earlier suggestions of an early shock event. This report is an attempt to emphasize the role of anorthite in the determination of the residual stress due to impact process in the parent body thus to understand the behavioral differences amongst HED members.展开更多
Thirty-two meteorites were collected in Grove Mountains area, Antarctica, by the 15th and 16th Chinese Antarctic Research Expeditions (CHINARE). Petrography and mineral chemistry of these meteorites are reviewed, amon...Thirty-two meteorites were collected in Grove Mountains area, Antarctica, by the 15th and 16th Chinese Antarctic Research Expeditions (CHINARE). Petrography and mineral chemistry of these meteorites are reviewed, among which there are one Martian lherzolite, one eucrite, one ungrouped iron meteorite, and six unequili-brated and twenty-three equilibrated ordinary chondrites. An equilibrated ordinary chondrite GRV 98004 ( H5 ) has an unusually low cosmic-ray exposure age. Meteorite concentrating processes in Grove Mountains area are discussed. In addition, future studies on Grove Mountains (GRV) meteorites are proposed.展开更多
Coupled with a petrographical study, I carried out an ion probe study of rare earth element microdistributions in mineral phases of silicate inclusions from the Colomera ⅡE iron meteorite. Most mineral grains have ho...Coupled with a petrographical study, I carried out an ion probe study of rare earth element microdistributions in mineral phases of silicate inclusions from the Colomera ⅡE iron meteorite. Most mineral grains have homogeneous REEs, but show considerable inter-grain variations by a factor of 2 to 100. The whole rock REE abundances for Colomera, estimated by combining REE data with modal abundances, are relatively LREE-enriched with REEs of -10'CI, which suggest that Colomera silicates were highly differentiated and might represent a low degree partial melt (-10%) of a chondritic source. REE geochemistry of Colomera silicate inclusions points to an origin that involves differentiation, dynamic mixing, remelting, reduction, recrystallization, and subsequent rapid cooling near the surface of a planetary body.展开更多
The concentrations of 13 elements in the metal of 52 Antarctic irons have been reported and these irons have been classified based on the structures and their Ga,Ge, Ni, Ir and other trace elemental contents. The 52 i...The concentrations of 13 elements in the metal of 52 Antarctic irons have been reported and these irons have been classified based on the structures and their Ga,Ge, Ni, Ir and other trace elemental contents. The 52 iron meteorites assigned to chemical group consist of 16 of ⅠAB,12 of ⅡAB, 1 of ⅡE,3 of ⅢAB, 1 of ⅢCD, 1Of ⅣA and 18 of ungrouped irons. The ⅠAB, ⅢCD and ⅡE iron meteorite groups areconsidered to be of nonmagmatic origin. Nonmagmatic ⅠAB, ⅢCD and ⅡE ironsformed as individual pools of a chondritic body. The other groups, ⅡAB, ⅢAB andⅣA show the evidences of having originated by fractional crystallization of a metallicmagma.The slopes on element-Ni trends in the magmatic are generally higher than inthe nonmagmatic groups. Most interestings are the high abundance Of ungrouped andⅠAB (47.2% and 27.8%,respectively) and low abundance of ⅢAB (5.8%).Antarctic irons of the group abundances can be distinguished from non-Antarctic irons,which provide the information about previously unsampled parent planets, mass,shockand collision,as well as nebula regions.展开更多
An electrical resistivity tomography (ERT) study was conducted at Bukit Bunuh, Lenggong Perak (Malaysia). The study is to justify the features and environmental subsurface geological structure which is due to the mete...An electrical resistivity tomography (ERT) study was conducted at Bukit Bunuh, Lenggong Perak (Malaysia). The study is to justify the features and environmental subsurface geological structure which is due to the meteorite impact. The ERT survey used resistivity equipments comprises of 4 survey lines with 5 m electrode intervals, covering an area of approximately 64 km2. The survey lines were carried out using ‘roll-along’ technique. The data were processed and analysed using RES2DINV, Excel and Surfer software in order to produce electrical resistivity tomography for qualitative interpretations. The results show the variation of resistivity value and faults. The 2-D resistivity results generally show the study area was divided into two main zones, alluvium with resistivity value of 10 - 800 Ωm, and bedrock with resistivity value of > 1500 Ωm and depth of 20 - 40 m. There are lots of fractured zones which are different than normal, identified along the survey lines. The South-North line shows the fractured zones were identified at 760 - 3800 m and 4700 - 5900 m. The West-East line, the fractured zone was identified at 1545 - 6570 m and North-West to South-East line, the fractured zone was identified at 740 - 5850 m. Meanwhile, South-West to North-East line, the fractured zone was identified at 720 - 1520 m. These interesting results were indicated at position of longitude;100.965 - 100.978 and latitude;5.056 - 5.066 where the bedrock depth is 40 - 60 m MSL and highly fractured. The area was surrounded by high elevated bedrock. Integration of 2-D resistivity results with boreholes is successful give valid and reliable results. The results of the study indicate that these geophysical approaches have a capability of retrieving the meteorite impact subsurface of the studied area.展开更多
基金EP-A and JMT-R acknowledges financial support from the project PID2021-128062NB-I00 funded by MCIN/AEI/10.13039/501100011033The lunar samples studied here were acquired in the framework of grant PGC2018-097374-B-I00(P.I.JMT-R)+3 种基金This project has received funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(No.865657)for the project“Quantum Chemistry on Interstellar Grains”(QUANTUMGRAIN),AR acknowledges financial support from the FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación(No.PID2021-126427NB-I00)Partial financial support from the Spanish Government(No.PID2020-116844RB-C21)the Generalitat de Catalunya(No.2021-SGR-00651)is acknowledgedThis work was supported by the LUMIO project funded by the Agenzia Spaziale Italiana(No.2024-6-HH.0).
文摘Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value,nondestructive testing methods are essential.This translates into the application of microscale rock mechanics experiments and scanning electron microscopy for surface composition analysis.This study explores the application of Machine Learning algorithms in predicting the mineralogical and mechanical properties of DHOFAR 1084,JAH 838,and NWA 11444 lunar meteorites based solely on their atomic percentage compositions.Leveraging a prior-data fitted network model,we achieved near-perfect classification scores for meteorites,mineral groups,and individual minerals.The regressor models,notably the KNeighbor model,provided an outstanding estimate of the mechanical properties—previously measured by nanoindentation tests—such as hardness,reduced Young’s modulus,and elastic recovery.Further considerations on the nature and physical properties of the minerals forming these meteorites,including porosity,crystal orientation,or shock degree,are essential for refining predictions.Our findings underscore the potential of Machine Learning in enhancing mineral identification and mechanical property estimation in lunar exploration,which pave the way for new advancements and quick assessments in extraterrestrial mineral mining,processing,and research.
基金This work is supported by the National Natural Science Foundation of China(Grant No.40232026)the pilot project of knowledge innovation program of the Chinese Academy of Sciences(Grant No.KZCX3-SW-123).
文摘Reported in this paper are the petrology and mineral chemistry of GRV 020090, the second Martian meteorite collected from the Grove Mountains, Antarctica. This meteorite, with a mass of 7.54 g, is completely covered by a black and glazy fusion crust. It has two distinct textural regions. The interstitial region is composed of euhedral grains of olivine, pigeonite, and anhedral interstitial maskelynite, with minor chromite, augite, phosphates and troilite. The poikilitic region consists of three clasts of pyroxenes, each of which has a pigeonite core and an augite rim. A few grains of subhedral to rounded olivine and euhedral chromite are enclosed in the pyroxene oikocrysts. GRV 020090 is classified as a new member of lherzolitic shergottites based on the modal composition and mineral chemistry. This work will shed light on the composition of Martian crust and magmatism on the Mars.
基金funded by the National Natural Science Foundation of China (Grant nos.41776196 and 41173077)the National Infrastructure Natural Resource Platform for Science and Technology (Grant no.2005DKA2146)
文摘More than 50000 meteorite samples have been collected in Antarctica since 1969, making meteorite surveys a very important aspect of Antarctic expeditions. The Chinese National Antarctic Research Expedition has collected more than 12000 meteorites in the Grove Mountains region, where has been confirmed as one of the richest meteorite concentration sites in Antarctica. China, therefore, possesses one of the world’s largest Antarctic meteorite collections and has made substantial contributions to this field of research. We summarize here the Chinese meteorite survey efforts in the Grove Mountains, as well as discuss progress of the classification and investigation of Grove Mountains meteorites. Outlooks are also proposed for the future of Antarctic meteorite work.
基金supported by the National Natural Science Fund of China (Grant no. 41173077)the Scientific Research Project of Guangxi Colleges (Grant no. KY2015LX119)+1 种基金the National Science and Technology Infrastructure Platform Project (Grant no.2005DKA21406)the Key Laboratory of Geological Fluid and Geological Process at Universities of Guangxi Province
文摘Meteorites provide an important window into the origins and evolution of the solar system. Since the first four meteorites were recovered in Grove Mountains, Antarctica, in 1998, a further total of 12665 meteorites have been collected over seven polar seasons in the Grove Mountains. All of these meteorites are owned and managed by the Chinese Antarctic Meteorite Depository (CAMD) at the Polar Research Institute of China (PRIC). In recent years, another 500 Antarctic meteorites have been classified and characterized based on mineralogy and petrology. In this work we examine four samples that have been identified as terrestrial, and a further 496 samples that have been confirmed as meteorites. These meteorites are further divided into different types:488 ordinary chondrites, one eucrite, one ureilite, one CM2 carbonaceous chondrite, one EH4 enstatite chondrite, one mesosiderite and three iron meteorites. The classification of meteorites not only provides an abundance of fundamental scientific data, but is also significant for introducing meteorites and related scientific knowledge to the publics particularly via the website of Chinese Resource-sharing Platform of Polar Samples for scientific research and education.
基金supported by the Knowledge Innovation Programof the Chinese Academy of Sciences(kzcx2-yw-110,KZCX2-YW-Q08)
文摘This paper reviews and summarizes the Chinese Antarctica meteorite search, classification and research. During the past four antarctic explorations, a total of 9834 meteorites were collected in the Grove Mountains region. Among them, 2431 meteorites were classified by the end of 2008. So far, 684 meteorites have been officially published in the Meteoritical Bulletin, Meteoritical Society, including 2 martian meteorites, 2 eucrites, 6 ureilites, 5 mesosiderites, 1 pallasite, 1 iron and 10 carbonaceous chondrites. Comprehensive studies were carried out on a number of these rare type meteorites. In addition, we propose to continue the meteorite searching project in Grove Mountains and other regions in Antarctica. We also suggest several key topics of the future researches on the Chinese Antarctic meteorites.
基金was supported by the Natural Science Foundation of China(Grant no.41173077)the Director Fund of Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration(Grant no.13-A-01-02)
文摘MIL090036 is a previously unknown meteorite (a feldspathic lunar breccia) that was discovered in Antarctica. The detailed petrography and mineralogy of this meteorite forms the subject of this paper. It has a typical clastic texture that consists of various types of rock debris (e.g. anorthosite, gabbroic anorthosite, gabbro, regolith breccia, troctolite, microporphyritic crystalline impact melt and compound clasts), mineral crystal fragments (e.g. pyroxenes, plagioclase, olivine and ilmenite) and feldspathic glass clasts. The ifne-grained recrystallized minerals and mineral clasts are cemented together in a glassy groundmass. The anorthite content of plagioclase in the gabbro (An81-83) and anorthosite (An88-93) both have relatively low calcium content compared to those from other breccias (An90-98). The pyroxene composition (Fs12-35 Wo3-44 En22-79) in the rock debris, crystal mineral clasts and anorthositic glass clasts are relatively iron-deifcient compared to those from gabbro debris with melt glass (Fs37-65 Wo10-29 En21-49) and groundmass (Fs18-69 Wo3-45 En14-50). In contrast, the pyroxene grains in the gabbroic anorthosite display a narrow compositional range (Fs24-27 Wo7-14 En59-69). Olivine grains in mineral fragments and the groundmass have a wider compositional range (Fo57-79) than those in the rock debris (Fo67-77). The Fe/Mn ratio in olivine is in the range of 47 to 83 (average 76) and 76 to 112 (average 73) in pyroxenes, and hence classify within the lunar ifeld. The characteristics of texture, mineral assemblage and compositions suggest that MIL090036 possibly originated from a region beyond that of the Apollo and Luna samples. Further study of MIL090036 is therefore likely to lead to a better understanding of the geological processes on the Moon and the chemical composition of the lunar crust.
基金funded by the National Natural Science Foundation of China(Grant nos.41173077 and 40673055)the National Natural Resources Platform Project of China(Grant no.2005DKA21406-1)the Director Fund Project of Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration(Grant no.13A-01-02)
文摘Lunar meteorites are fragments of the Moon that escaped the gravity of the Moon following high-energy impacts by asteroids, subsequently fell to Earth. An inventory of 165 lunar meteorites has been developed since the discovery and identification of the first lunar meteorite, ALHA 81005, in 1979. Although the Apollo samples are much heavier in mass than lunar meteorites, the meteorites are still an important sample supplement for scientific research on the composition and history of the Moon. Apart from a small amount of unbrecciated crystalline rocks, the majority of lunar meteorites are breccias that can be classified into three groups: highland feldspathic breccia, mare basaltic breccia, and mingled(including fledspathic and basaltic clasts) breccia. The petrography of lunar rocks suggests that there are a series of rock types of anorthosite, basalt, gabbro, troctolite, norite and KREEP in the Moon. Although KREEP is rare in lunar rocks, KREEP components have been found in the increasing number of lunar meteorites. KREEP provides important information on lunar magmatic evolution, e.g., the VHK KREEP clasts in SaU 169 may represent the pristine lunar magma (urKREEP). Six launching pairs of lunar meteorites have been proposed now, along with ten possible lunar launching sites. In addition, symplectite is often found in lunar basalts, which is a significant record of shock metamorphism on the lunar surface. Furthermore, isotopic ages and noble gases not only provide information on crystallization processes in lunar rocks and the formation of lunar crust, but also provide insight into shock events on the lunar surface.
文摘GRV 90027 is a Martian lherzolitic shergottites (L-S) containing poikilitic, non-poikilitic, and melted pocket components. GRV 99027 is mainly composed of olive (55 vol% ) and pyroxene (37.5 vol% ), with minor maskelynite (6 vol% ) and chromite ( 1.5 vol% ), and trace whitelockite and troilite, ect. In this paper, the mineralogy and petrology of GRV 99027 are reported; in addition, the geochemical characteristics of the REEs and H isotopes in the GRV 99027 are also further investigated. The 2REE in GRV 99027 is relatively low; HREEs are enriched in olivine and pyroxene grains; LREEs are enriched in plagioclase with a high positive Eu anomaly. High EREE value is found in rare mineral whitlockite (less than 0. 2 vol% ), LREE ≈ HREE, and whitlockite has a negative Eu anomaly. The REE distribution patterns of the whole -rock of GRV 99027 is similar to but different from that of other L-S Martian meteorites, indicating that they came from different location of Mars. GRV 99027 has a high 8D value. Different water-bearing minerals give different contribution for 8D value. The 8D of phosphates generally does not correlate with water content, and 8D has a weak negative correlation with water content. GRV 99027 can be classified as an L-S Martian meteorite based on mineralogical assemblage patterns, REE distribution patterns, and hydrogen isotope. The isotope data of Sr, Nd, Pb, Os and REE from other L-S Martian meteorites were collected to discuss the formation history of the GRV 99027. Similar to other L-S Martian meteorites, GRV 99027 originated from part of Mar's mantle; during one strong impact event about 4M years ago, the meteorites were ejected from deep mantle into space, and traveled for a different duration in space (indicated by different cosmic exposure time), and captured by the Earth later in different time, ultimately falling on the Antarctica as L-S Martian meteorites.
基金funded by the National Natural Science Foundation of China(Grant No.40473037 and 40673055)Guangxi College Talents Support Program(RC2007020)
文摘Meteorites are the extraterrestrial rocks, which provide insights into the origin and evolution of the solar system. During the past half century, a great number of meteorites has been discovered on the Antarctic Ice Sheet, confirming that the Antarctica is the most important meteorite concentration area on the earth. Since the first four Antarctic meteorites were found in Grove Mountains in 1998, a total of 9834 meteorites have been collected by four subsequent expeditions. It opens a new field of meteorite study in China, and also accumulates a great deal of scientific samples for China. Recently, classification of Grove Mountains meteorites has been carried out for 6 years, and made following progresses : ( 1 ) 2433 meteorites, which include many special meteorites, e.g. Martian meteorites, ureilites and carbonaceous chondrites, have been classified. (2) the Antarctic meteorite curation and the sample sharing system are set up preliminarily. (3) the classification procedure, the management of meteorite samples, and the application procedure for the Antarctic meteorites are completed after the systematic classification during these years. (4) young generation researchers on meteorite are trained through the cooperation of many universities and institutes on meteorite classification.
基金supposed by the National Natural Science Foundation of China(Grant No.40232026).
文摘Concentrations of Cr, Co, Ni, Cu, Ga, Ge, As, Sb, W, Re, Ir, Pt and Au of two ungrouped iron meteorites, Grove Mountains (GRV) 98003 from Antarctica and Ujimqin, were measured using instrumental neutron activation analysis. According to the bulk chemistry, GRV 98003 is classified as a member of ⅠAB group, and Ujimqin as a unique one of ⅠAB iron meteorite complex. The elemental abundance pattern and correlation between elements (e. g. Ni-Au, Co-Au, As-Au, W- Au, Cu-Au, Sb-Au) of GRV 98003 are similar with those of NAW 468 (ⅠAB), but significantly depleted in refractory siderophile elements ( Re, It) and moderate volatile elements (Ca, Ge) relative to the latter. In addition, we reclassify Nantan (ⅢCD) as a member of ⅠAB main group (MG) and Yongning (ⅠA) as a unique iron meteorite related with IAB iron meteorite complex.
文摘A space object exploded near the city of Chelyabinsk on February 15, 2013. Meteorite fragments reached the Earth’s surface, and accordingly we may consider this space object to have been a meteorite. However, this event showed a number of features not corresponding to the destruction of a meteorite. The space object began to disintegrate at an altitude of 70 km when pressure (dynamical loads) on its front surface was ~6.7 × 103 N·m-2. The substance from the object’s surface was not blown off by drops, as at ablation, but was dumped by jets over a distance up to 1 km. The trail of this space object visually reminded us of a jet aircraft’s contrail, made up of water. But there is no enough water at altitudes of 30 - 70 km. It may be assumed that the object itself delivered water to these altitudes. The calculation of gas rise over the trail showed that the temperature in some parts of this trail was about 900 K. Heating of large masses of gas can be explained not only by the release of kinetic energy of the space object, but also by combustion processes of its substance. Thus, it was concluded that the meteorite could have been delivered by a comet.
基金funded by the National Natural Science Foundation of China (Grant No. 41173077)Chinese science and technology basic conditions platform project of Ministryof Science and Technology (2005DKA21406-9)Science and technology plan projects in guangxi(AD16450001)
文摘1 Introduction The howardite,eucrite and diogenite(HED)meteorites are ultramafic and mafic igneous rocks and impact-engendered breccias derived from a thoroughly differentiated asteroid 4 Vesta.Diogenites include dunites,
文摘At 21:45 hr (Beijing time ) on Oct. 31, 1990 the Yanzhuang meteorite hit the ground atthe Yanzhuang village, Wenyuan County, Guangdong Province. Several fragments, tota1ling 3. 5 kg,were recovered during the field survey. This meteorite is a rare one of its kind due to its heavilyshocked features and thick veins made up of black molten materials.olivine and lowcalcium pyroxene are compositionally homogeneous with Fa= 18. 59, Fs= 16. 35and Wo = 1. 29. The chemica1 composition (total Fe=28. 0% ) and recrystallized texture of thechondritic mass show that the Yanzhuang is an H6 chondrite. The black molten materials occur inthe form of blocks (up to 2×3×4 cm in size) and veins (0.1 - 15 mm in width), and contain a lotof rounded and elliptic FeNi-FeS blobs (up to 6- 10 mm in length). The metal in these blobs exhib-its distinct dendritic str-ucture characteristic of rapid cooling. Unmolten and molten samples are verysimilar in chemical composition, fitting well with the average H-chondrites. Partial melting andFeNi/FeS-silicate separation have not been observed in the molten materials of the Yanzhuang.
基金partially supported by the Ministry of Education and Science of the Russian Federation (project No.4.8192.2017/ 8.9)
文摘This paper summarizes the challenges of identifying planetary-origin meteorites of non-igneous composition - particularly those of sedimentary origin.Evidence for putative sedimentary-origin (sedtype) meteorites and their potential parent bodies is reviewed,suggesting that the list of candidate parent bodies for sed-type meteorites includes,but is not limited to,Mars,Enceladus,Ganymede,Europa,Ceres,Vesta,and other hypothetical planets that existed between the orbits of Mars and Jupiter in the past.The extraterrestrial origin and probable parent body for sed-type meteorites should be assessed based on multiple lines of evidence,and not solely limited to tests of oxygen and noble gas isotopes,whose signatures may undergo terrestrial contamination and which may exhibit significant heterogeneity within both the Solar System and parent cosmic bodies.The observed fall of a cosmic body,evidence of hypervelocity fall,signs of impact,presence of fusion crust,melting,and/or shock deformation features in impactor fragments should be considered as priority signs of meteoritic origin.
基金The Project Supported by National Natural Science Foundation of China
文摘The Shenqiu meteorite was investigated by Mossbauer spectroscopy at room temperature, atomic absorption, X-ray diffraction and scanning electron microscopy. In order to determine fired conditions of the meteorite which occurred during the meteorite fall, Shenqiu meteorite samples were fired in an oxidizing atmosphere and a reducing atmosphere at temperatures up to 1300℃, respectively. These samples also were fired at 800, 1000 and 1200 ℃ respectively for different time (up to 24 h).
基金Council of Scientific and Industrial Research(CSIR),PLANEX program of India Space Research Organization,Department of Space(Government of India),CSR-SHORE-PSC-02005 and ISRO projects(GP)for funding, CSIR for providing Emeritus Scientist Fellowship(UC)
文摘We report here high-pressure investigations on Piplia Kalan eucrite-a member of HED (Howardite -Eucrite-Diogenite) family from asteroid 4-Vesta based on synchrotron X-ray diffraction (up to 16 GPa) and ^57Fe Mossbauer spectroscopy (up to 8 GPa). Dominant with anorthite-rich plagioclase, pigeonite-rich pyroxene and clino-ferrosilite, the sample displayed various phase transitions attaining amorphous character at 16 GPa. These phase transitions of individual components could be explained simultaneously through variations in high-pressure XRD patterns and the Mossbauer parameters. Most prominent P21/c to C2/c transition of pigeonite and ferrosilite was exhibited both as sudden variation in Mossbauer parameters and population inversion of Fe^2+ in M1 and M2 sites between 2.9 and 3.8 GPa and variation in intensity profile in XRD patterns at 3.56 GPa. Anorthite seemed to respond more to such impact than other components in the sample. Complete amorphization in anorthite which occurred at lower pressure of - 12 GPa implied residual stress experienced due to shock impact. The presence of high pressure (monoclinic) phase of pigeonite and ferrosilite at ambient condition in this eucrite sample confirmed earlier suggestions of an early shock event. This report is an attempt to emphasize the role of anorthite in the determination of the residual stress due to impact process in the parent body thus to understand the behavioral differences amongst HED members.
基金supported by the Pilot Project of the Knowledge Innovation Program(KIP)of Chinese Academy of Sciences(No.KZCX3-SW-123)
文摘Thirty-two meteorites were collected in Grove Mountains area, Antarctica, by the 15th and 16th Chinese Antarctic Research Expeditions (CHINARE). Petrography and mineral chemistry of these meteorites are reviewed, among which there are one Martian lherzolite, one eucrite, one ungrouped iron meteorite, and six unequili-brated and twenty-three equilibrated ordinary chondrites. An equilibrated ordinary chondrite GRV 98004 ( H5 ) has an unusually low cosmic-ray exposure age. Meteorite concentrating processes in Grove Mountains area are discussed. In addition, future studies on Grove Mountains (GRV) meteorites are proposed.
基金This work was partly supported by National Natural Science Foundation of China(Grant No.40325009)by“One-hundred Talent Program”of the Chinese Academy of Sciences.
文摘Coupled with a petrographical study, I carried out an ion probe study of rare earth element microdistributions in mineral phases of silicate inclusions from the Colomera ⅡE iron meteorite. Most mineral grains have homogeneous REEs, but show considerable inter-grain variations by a factor of 2 to 100. The whole rock REE abundances for Colomera, estimated by combining REE data with modal abundances, are relatively LREE-enriched with REEs of -10'CI, which suggest that Colomera silicates were highly differentiated and might represent a low degree partial melt (-10%) of a chondritic source. REE geochemistry of Colomera silicate inclusions points to an origin that involves differentiation, dynamic mixing, remelting, reduction, recrystallization, and subsequent rapid cooling near the surface of a planetary body.
文摘The concentrations of 13 elements in the metal of 52 Antarctic irons have been reported and these irons have been classified based on the structures and their Ga,Ge, Ni, Ir and other trace elemental contents. The 52 iron meteorites assigned to chemical group consist of 16 of ⅠAB,12 of ⅡAB, 1 of ⅡE,3 of ⅢAB, 1 of ⅢCD, 1Of ⅣA and 18 of ungrouped irons. The ⅠAB, ⅢCD and ⅡE iron meteorite groups areconsidered to be of nonmagmatic origin. Nonmagmatic ⅠAB, ⅢCD and ⅡE ironsformed as individual pools of a chondritic body. The other groups, ⅡAB, ⅢAB andⅣA show the evidences of having originated by fractional crystallization of a metallicmagma.The slopes on element-Ni trends in the magmatic are generally higher than inthe nonmagmatic groups. Most interestings are the high abundance Of ungrouped andⅠAB (47.2% and 27.8%,respectively) and low abundance of ⅢAB (5.8%).Antarctic irons of the group abundances can be distinguished from non-Antarctic irons,which provide the information about previously unsampled parent planets, mass,shockand collision,as well as nebula regions.
文摘An electrical resistivity tomography (ERT) study was conducted at Bukit Bunuh, Lenggong Perak (Malaysia). The study is to justify the features and environmental subsurface geological structure which is due to the meteorite impact. The ERT survey used resistivity equipments comprises of 4 survey lines with 5 m electrode intervals, covering an area of approximately 64 km2. The survey lines were carried out using ‘roll-along’ technique. The data were processed and analysed using RES2DINV, Excel and Surfer software in order to produce electrical resistivity tomography for qualitative interpretations. The results show the variation of resistivity value and faults. The 2-D resistivity results generally show the study area was divided into two main zones, alluvium with resistivity value of 10 - 800 Ωm, and bedrock with resistivity value of > 1500 Ωm and depth of 20 - 40 m. There are lots of fractured zones which are different than normal, identified along the survey lines. The South-North line shows the fractured zones were identified at 760 - 3800 m and 4700 - 5900 m. The West-East line, the fractured zone was identified at 1545 - 6570 m and North-West to South-East line, the fractured zone was identified at 740 - 5850 m. Meanwhile, South-West to North-East line, the fractured zone was identified at 720 - 1520 m. These interesting results were indicated at position of longitude;100.965 - 100.978 and latitude;5.056 - 5.066 where the bedrock depth is 40 - 60 m MSL and highly fractured. The area was surrounded by high elevated bedrock. Integration of 2-D resistivity results with boreholes is successful give valid and reliable results. The results of the study indicate that these geophysical approaches have a capability of retrieving the meteorite impact subsurface of the studied area.