This paper considers a linear-quadratic(LQ) meanfield game governed by a forward-backward stochastic system with partial observation and common noise,where a coupling structure enters state equations,cost functionals ...This paper considers a linear-quadratic(LQ) meanfield game governed by a forward-backward stochastic system with partial observation and common noise,where a coupling structure enters state equations,cost functionals and observation equations.Firstly,to reduce the complexity of solving the meanfield game,a limiting control problem is introduced.By virtue of the decomposition approach,an admissible control set is proposed.Applying a filter technique and dimensional-expansion technique,a decentralized control strategy and a consistency condition system are derived,and the related solvability is also addressed.Secondly,we discuss an approximate Nash equilibrium property of the decentralized control strategy.Finally,we work out a financial problem with some numerical simulations.展开更多
The neutron star as a supernova remnant is attracting high attention recently due to the gravitation wave detection and precise measurements about its mass and radius.In particular,the compact object with a mass of 2....The neutron star as a supernova remnant is attracting high attention recently due to the gravitation wave detection and precise measurements about its mass and radius.In particular,the compact object with a mass of 2.50-2.67 M_(⊙)observed by LIGO Scientific and Virgo collaborations in GW190814,as well as the recent report of a light compact object with a mass and radius of M=0.77_(-0.17)^(+0.20)M_(⊙)and R=10.4_(-0.78)^(+0.86)km within the supernova remnant HESS J1731-347,have posed a great challenge to the investigations into the supranuclear matter.In the inner core of a neutron star,the strangeness degrees of freedom,such as the hyperons,can be present to form a hyperon star.In this work,the neutron star consisting of nucleons and leptons,and the hyperonic star including the hyperons will be studied in the framework of the density-dependent relativistic mean-field(DDRMF)model.Some popular DDRMF parameterizations will be adopted to investigate the properties of nuclear matter and the mass,radius,tidal deformability,and other properties of neutron star and hyperonic stars.We find that the maximum masses of neutron star calculated by DD-MEX,DD-MEX1,DD-MEX2,DD-MEXY and DD-LZ1 sets can be around 2.5-2.6 MM_(⊙)because they can produce quite stiff equations of state(EOSs)due to the strong repulsive contributions from vector potentials at high densities.Moreover,by investigating the influence of the crust EOS and core EOS on the neutron stars,we find that the observational data from HESS J1731-347 suggest the requirement of a crust EOS with a higher L parameter and a core EOS with a lower L parameter,and the M-R relations from the constructed EOSs can also be consistent with the observables of PSR J0740+6620,PSR J0030+0451 from NICER and the GW170817 event.With the inclusion of hyperons,the hyperonic star matter becomes softer compared to the neutron star matter,but the massive hyperonic star can also be obtained with DDRMF parameter sets if the vector meson coupling constants are strong.展开更多
The potential energy surfaces are calculated for neutron-deficient At isotopes from A - 190 to 207 in an axially deformed relativistic mean-field approach, using a quadratic constraint scheme for the first time. We fi...The potential energy surfaces are calculated for neutron-deficient At isotopes from A - 190 to 207 in an axially deformed relativistic mean-field approach, using a quadratic constraint scheme for the first time. We find several minima in the potential energy surface for each nucleus, shape-coexistence, and quadratic deform are discussed.展开更多
By using the mean-field Jordan-Wigner transformation analysis,this paper studies the one-dimensionalspin-1/2 XYZ antiferromagnetic chain in the transverse field with uniform long-range interactions among the z-compone...By using the mean-field Jordan-Wigner transformation analysis,this paper studies the one-dimensionalspin-1/2 XYZ antiferromagnetic chain in the transverse field with uniform long-range interactions among the z-components of the spins.The thermodynamic quantities,such as Helmholtz free energy,the internal energy,the specificheat,and the isothermal susceptibility,are obtained.Under degenerating condition,our results agree with numericalresults of the other literatures.展开更多
In this work, the magnetic properties of Ising and XY antiferromagnetic thin-films are investigated each as a function of Neel temperature and thickness for layers (n = 2, 3, 4, 5, 6, and bulk (∞) by means of a me...In this work, the magnetic properties of Ising and XY antiferromagnetic thin-films are investigated each as a function of Neel temperature and thickness for layers (n = 2, 3, 4, 5, 6, and bulk (∞) by means of a mean-field and high temperature series expansion (HTSE) combined with Pade approximant calculations. The scaling law of magnetic susceptibility and magnetization is used to determine the critical exponent γ, veff (mean), ratio of the critical exponents γ/v, and magnetic properties of Ising and XY antiferromagnetic thin-films for different thickness layers n = 2, 3, 4, 5, 6, and bulk (∞).展开更多
In this paper we consider one dimensional mean-field backward stochastic differential equations(BSDEs)under weak assumptions on the coefficient.Unlike[3],the generator of our mean-field BSDEs depends not only on the s...In this paper we consider one dimensional mean-field backward stochastic differential equations(BSDEs)under weak assumptions on the coefficient.Unlike[3],the generator of our mean-field BSDEs depends not only on the solution(Y,Z)but also on the law PY of Y.The first part of the paper is devoted to the existence and uniqueness of solutions in Lp,1<p≤2,where the monotonicity conditions are satisfied.Next,we show that if the generator/is uniformly continuous in(μ,y,z),uniformly with respect to(t,ω) and if the terminal valueξbelongs to Lp(Ω,F,P)with 1<p≤2,the mean-field BSDE has a unique Lp solution.展开更多
This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information avail...This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.展开更多
We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act ...We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act as an information bit in computer technology. In the presence of magnetic dipole–dipole interaction(DDI) between the two particles,the critical switching current Ic for reversing the two dipoles is analytically obtained and numerically verified in two typical geometric configurations. The Ic bifurcates at a critical DDI strength, where Ic can decrease to about 70% of the usual value without DDI. Moreover, we also numerically investigate the magnetic hysteresis loop, magnetization self-precession,reversal time and synchronization stability phase diagram for the two-body system in the synchronized dynamics regime.展开更多
Quantum dynamics and statistics of an atom laser with nonlinear binary interactions are investigated inthe framework of mean-field approximation. The linearized effective Hamiltonian of the system is accurately solvab...Quantum dynamics and statistics of an atom laser with nonlinear binary interactions are investigated inthe framework of mean-field approximation. The linearized effective Hamiltonian of the system is accurately solvable.It is shown that, although the input radio frequency field is in an ordinary Glauber coherent state, the output matterwave will periodically exhibit quadrature squeezing effects purely originated from the nonlinear atom-atom collisions.展开更多
By using a two-mode mean-field approximation, we study the dynamics of the microcavities containing semiconductor quantum wells. The exact analytical solutions are obtained in this study. Based on these solutions, we ...By using a two-mode mean-field approximation, we study the dynamics of the microcavities containing semiconductor quantum wells. The exact analytical solutions are obtained in this study. Based on these solutions, we show that the emission from the microcavity manifests periodic oscillation behaviour and the oscillation can be suppressed under a certain condition.展开更多
Starting with the many-body SchrSdinger Hamiltonian in R2, we prove that the ground state energy of a two-dimensional interacting Bose gas with the pairwise attractive interaction approaches to the minimum of the Gros...Starting with the many-body SchrSdinger Hamiltonian in R2, we prove that the ground state energy of a two-dimensional interacting Bose gas with the pairwise attractive interaction approaches to the minimum of the Gross-Pitaevskii energy functional in the mean- field regime, as the particle number N → ∞ and however the scattering length → 0. By fixing N|k|, this leads to the mean-field approximation of Bose-Einstein condensates with attractive interactions in R^2.展开更多
Energies, widths and wave functions of the single-particle resonant continuum are determined by solvingscattering states of the Dirac equation with proper asymptotic conditions for the continuous spectrum in the relat...Energies, widths and wave functions of the single-particle resonant continuum are determined by solvingscattering states of the Dirac equation with proper asymptotic conditions for the continuous spectrum in the relativisticmean-field theory. The relativistic regular and irregular Coulomb wave functions are calculated numerically. Theresonance states in the continuum for some closed- or sub-closed-shell nucleus in Sn-isotopes, such as 1 14Sn, 1 16Sn, 1 18Sn,and 120Sn are calculated. Results show that the S-matrix method is a reliable and straightforward way in determiningenergies and widths of resonant states.展开更多
The magnetic properties of a mixed spin-3/2 and spin-2 and a mixed spin-3/2 and spin-5/2 Ising ferromag- netic system with different anisotropies are studied by means of mean-field theory (MFT). The dependence of th...The magnetic properties of a mixed spin-3/2 and spin-2 and a mixed spin-3/2 and spin-5/2 Ising ferromag- netic system with different anisotropies are studied by means of mean-field theory (MFT). The dependence of the phase diagram on single-ion anisotropy strengths is studied too. In the mixed spin-3/2 and spin-2 Ising model, besides the second-order phase transition, the first order-disorder phase transition and the tricritical line are found. In the mixed spin-3/2 and spin-5/2 Ising model, there is no first-order transition and trieritical line.展开更多
The potential energy surface of179 Hg is traced and the multi-shape coexistence phenomenon in that nucleus is studied within the relativistic mean-field theory with quadrupole moment constraint. The calculation result...The potential energy surface of179 Hg is traced and the multi-shape coexistence phenomenon in that nucleus is studied within the relativistic mean-field theory with quadrupole moment constraint. The calculation results of binding energies and charge radii of mercury isotopes are in good agreement with the experimental data.展开更多
Electrocatalysis is undergoing a renaissance due to its central importance for a sustainable energy economy,relying on green(electro-)chemical processes to harvest,convert,and store energy.Theoretical considerations b...Electrocatalysis is undergoing a renaissance due to its central importance for a sustainable energy economy,relying on green(electro-)chemical processes to harvest,convert,and store energy.Theoretical considerations by electronic structure methods are key to identify potential material motifs for electrocatalytic processes at the solid/liquid interface.Most commonly,heuristic concepts in the realm of materials screening by the compilation of volcano plots are used,which rely on a plethora of simplifications and approximations of the complex electrochemical interface.While the investigation of the catalytic processes at the solid/liquid interface mainly relies on descriptor-based approaches,in the present future article it is discussed that the inclusion of the liquid part of the interface by mean-field models is crucial to elevate screening approaches to the next level.展开更多
We calculate the binding energies of Ni, Cu, Xe, Cs, Pt, Au, Np, Pu isotope chains using two interaction parameter sets NL-3 and NL-Z, and compared the relative errors of the even-even nuclei with those of odd-even nu...We calculate the binding energies of Ni, Cu, Xe, Cs, Pt, Au, Np, Pu isotope chains using two interaction parameter sets NL-3 and NL-Z, and compared the relative errors of the even-even nuclei with those of odd-even nuclei and odd-odd nuclei. We find that the errors of binding energy of odd-even and odd-odd nuclei are not bigger than the one of even-even nuclei. The result shows that comparing with even-even nuclei, there is no systematic error and approximation in the calculations of the binding energy of odd-even and odd-odd nuclei with relativistic mean-field theory. In addition, the result is explained theoretically.展开更多
基金supported by the National Key Research and Development Program of China(2022YFA1006103,2023YFA1009203)the National Natural Science Foundation of China(61925306,61821004,11831010,61977043,12001320)+2 种基金the Natural Science Foundation of Shandong Province(ZR2019ZD42,ZR2020ZD24)the Taishan Scholars Young Program of Shandong(TSQN202211032)the Young Scholars Program of Shandong University。
文摘This paper considers a linear-quadratic(LQ) meanfield game governed by a forward-backward stochastic system with partial observation and common noise,where a coupling structure enters state equations,cost functionals and observation equations.Firstly,to reduce the complexity of solving the meanfield game,a limiting control problem is introduced.By virtue of the decomposition approach,an admissible control set is proposed.Applying a filter technique and dimensional-expansion technique,a decentralized control strategy and a consistency condition system are derived,and the related solvability is also addressed.Secondly,we discuss an approximate Nash equilibrium property of the decentralized control strategy.Finally,we work out a financial problem with some numerical simulations.
文摘The neutron star as a supernova remnant is attracting high attention recently due to the gravitation wave detection and precise measurements about its mass and radius.In particular,the compact object with a mass of 2.50-2.67 M_(⊙)observed by LIGO Scientific and Virgo collaborations in GW190814,as well as the recent report of a light compact object with a mass and radius of M=0.77_(-0.17)^(+0.20)M_(⊙)and R=10.4_(-0.78)^(+0.86)km within the supernova remnant HESS J1731-347,have posed a great challenge to the investigations into the supranuclear matter.In the inner core of a neutron star,the strangeness degrees of freedom,such as the hyperons,can be present to form a hyperon star.In this work,the neutron star consisting of nucleons and leptons,and the hyperonic star including the hyperons will be studied in the framework of the density-dependent relativistic mean-field(DDRMF)model.Some popular DDRMF parameterizations will be adopted to investigate the properties of nuclear matter and the mass,radius,tidal deformability,and other properties of neutron star and hyperonic stars.We find that the maximum masses of neutron star calculated by DD-MEX,DD-MEX1,DD-MEX2,DD-MEXY and DD-LZ1 sets can be around 2.5-2.6 MM_(⊙)because they can produce quite stiff equations of state(EOSs)due to the strong repulsive contributions from vector potentials at high densities.Moreover,by investigating the influence of the crust EOS and core EOS on the neutron stars,we find that the observational data from HESS J1731-347 suggest the requirement of a crust EOS with a higher L parameter and a core EOS with a lower L parameter,and the M-R relations from the constructed EOSs can also be consistent with the observables of PSR J0740+6620,PSR J0030+0451 from NICER and the GW170817 event.With the inclusion of hyperons,the hyperonic star matter becomes softer compared to the neutron star matter,but the massive hyperonic star can also be obtained with DDRMF parameter sets if the vector meson coupling constants are strong.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10475116, 10535010, and 10235030, and Asia-Europe Link in Nuclear Physics and Astrophysics under Grant No. CN/ASIA-LINK/008 (094-791) and by Major State Basic Research Development Program of China under Grant No. 2007CB815000
文摘The potential energy surfaces are calculated for neutron-deficient At isotopes from A - 190 to 207 in an axially deformed relativistic mean-field approach, using a quadratic constraint scheme for the first time. We find several minima in the potential energy surface for each nucleus, shape-coexistence, and quadratic deform are discussed.
基金the Open Fund of Jiangsu Laboratory of Advanced Functional Materials under Grant No.06KFJJ004
文摘By using the mean-field Jordan-Wigner transformation analysis,this paper studies the one-dimensionalspin-1/2 XYZ antiferromagnetic chain in the transverse field with uniform long-range interactions among the z-components of the spins.The thermodynamic quantities,such as Helmholtz free energy,the internal energy,the specificheat,and the isothermal susceptibility,are obtained.Under degenerating condition,our results agree with numericalresults of the other literatures.
文摘In this work, the magnetic properties of Ising and XY antiferromagnetic thin-films are investigated each as a function of Neel temperature and thickness for layers (n = 2, 3, 4, 5, 6, and bulk (∞) by means of a mean-field and high temperature series expansion (HTSE) combined with Pade approximant calculations. The scaling law of magnetic susceptibility and magnetization is used to determine the critical exponent γ, veff (mean), ratio of the critical exponents γ/v, and magnetic properties of Ising and XY antiferromagnetic thin-films for different thickness layers n = 2, 3, 4, 5, 6, and bulk (∞).
基金supported in part by the NSFC(11222110,11871037)Shandong Province(JQ201202)+1 种基金NSFC-RS(11661130148,NA150344)111 Project(B12023)。
文摘In this paper we consider one dimensional mean-field backward stochastic differential equations(BSDEs)under weak assumptions on the coefficient.Unlike[3],the generator of our mean-field BSDEs depends not only on the solution(Y,Z)but also on the law PY of Y.The first part of the paper is devoted to the existence and uniqueness of solutions in Lp,1<p≤2,where the monotonicity conditions are satisfied.Next,we show that if the generator/is uniformly continuous in(μ,y,z),uniformly with respect to(t,ω) and if the terminal valueξbelongs to Lp(Ω,F,P)with 1<p≤2,the mean-field BSDE has a unique Lp solution.
文摘This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.
基金supported by the National Natural Science Foundation of China(Grant No.11274236)the Deutsche Forschungsgemeinschaft via SFB 689
文摘We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act as an information bit in computer technology. In the presence of magnetic dipole–dipole interaction(DDI) between the two particles,the critical switching current Ic for reversing the two dipoles is analytically obtained and numerically verified in two typical geometric configurations. The Ic bifurcates at a critical DDI strength, where Ic can decrease to about 70% of the usual value without DDI. Moreover, we also numerically investigate the magnetic hysteresis loop, magnetization self-precession,reversal time and synchronization stability phase diagram for the two-body system in the synchronized dynamics regime.
文摘Quantum dynamics and statistics of an atom laser with nonlinear binary interactions are investigated inthe framework of mean-field approximation. The linearized effective Hamiltonian of the system is accurately solvable.It is shown that, although the input radio frequency field is in an ordinary Glauber coherent state, the output matterwave will periodically exhibit quadrature squeezing effects purely originated from the nonlinear atom-atom collisions.
基金Project supported in part by the Natural Science Foundation of China (Grant Nos. 10575040,90503010,10634060 and 10874050)by National Basic Research Program of China (Grant No. 2005CB724508)+1 种基金the Foundation from the ministry of the National Education of China (Grant No. 200804870051)the Science Innovation Foundation of Huazhong University of Science and Technology (Grant No. HF-06-010-08-012)
文摘By using a two-mode mean-field approximation, we study the dynamics of the microcavities containing semiconductor quantum wells. The exact analytical solutions are obtained in this study. Based on these solutions, we show that the emission from the microcavity manifests periodic oscillation behaviour and the oscillation can be suppressed under a certain condition.
基金supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China,National Center for Mathematics and Interdisciplinary Sciences in China
文摘Starting with the many-body SchrSdinger Hamiltonian in R2, we prove that the ground state energy of a two-dimensional interacting Bose gas with the pairwise attractive interaction approaches to the minimum of the Gross-Pitaevskii energy functional in the mean- field regime, as the particle number N → ∞ and however the scattering length → 0. By fixing N|k|, this leads to the mean-field approximation of Bose-Einstein condensates with attractive interactions in R^2.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10075080, 19847002, 19835010 and Major State Basic Research Development Program under Grant No. G20000774
文摘Energies, widths and wave functions of the single-particle resonant continuum are determined by solvingscattering states of the Dirac equation with proper asymptotic conditions for the continuous spectrum in the relativisticmean-field theory. The relativistic regular and irregular Coulomb wave functions are calculated numerically. Theresonance states in the continuum for some closed- or sub-closed-shell nucleus in Sn-isotopes, such as 1 14Sn, 1 16Sn, 1 18Sn,and 120Sn are calculated. Results show that the S-matrix method is a reliable and straightforward way in determiningenergies and widths of resonant states.
文摘The magnetic properties of a mixed spin-3/2 and spin-2 and a mixed spin-3/2 and spin-5/2 Ising ferromag- netic system with different anisotropies are studied by means of mean-field theory (MFT). The dependence of the phase diagram on single-ion anisotropy strengths is studied too. In the mixed spin-3/2 and spin-2 Ising model, besides the second-order phase transition, the first order-disorder phase transition and the tricritical line are found. In the mixed spin-3/2 and spin-5/2 Ising model, there is no first-order transition and trieritical line.
文摘The potential energy surface of179 Hg is traced and the multi-shape coexistence phenomenon in that nucleus is studied within the relativistic mean-field theory with quadrupole moment constraint. The calculation results of binding energies and charge radii of mercury isotopes are in good agreement with the experimental data.
基金funding by the Ministry of Culture and Science of the Federal State of North Rhine-Westphalia(NRW Return Grant)funded by the CRC/TRR247:“Heterogeneous Oxidation Catalysis in the Liquid Phase”(Project number 388390466-TRR 247)+2 种基金the RESOLV Cluster of Excellence,funded by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy–EXC 2033–390677874–RESOLVthe Center for Nanointegration(CENIDE)supported by COST(European Cooperation in Science and Technology)。
文摘Electrocatalysis is undergoing a renaissance due to its central importance for a sustainable energy economy,relying on green(electro-)chemical processes to harvest,convert,and store energy.Theoretical considerations by electronic structure methods are key to identify potential material motifs for electrocatalytic processes at the solid/liquid interface.Most commonly,heuristic concepts in the realm of materials screening by the compilation of volcano plots are used,which rely on a plethora of simplifications and approximations of the complex electrochemical interface.While the investigation of the catalytic processes at the solid/liquid interface mainly relies on descriptor-based approaches,in the present future article it is discussed that the inclusion of the liquid part of the interface by mean-field models is crucial to elevate screening approaches to the next level.
基金The project supported by National Natural Science Foundation of China under Grant No. 10475026 (2004)
文摘We calculate the binding energies of Ni, Cu, Xe, Cs, Pt, Au, Np, Pu isotope chains using two interaction parameter sets NL-3 and NL-Z, and compared the relative errors of the even-even nuclei with those of odd-even nuclei and odd-odd nuclei. We find that the errors of binding energy of odd-even and odd-odd nuclei are not bigger than the one of even-even nuclei. The result shows that comparing with even-even nuclei, there is no systematic error and approximation in the calculations of the binding energy of odd-even and odd-odd nuclei with relativistic mean-field theory. In addition, the result is explained theoretically.