Aluminum(Al)toxicity can seriously restrict crop production on acidic soils,which comprise 40%of the world’s potentially arable land.The zinc finger transcription factor STOP1 has a conserved and essential function i...Aluminum(Al)toxicity can seriously restrict crop production on acidic soils,which comprise 40%of the world’s potentially arable land.The zinc finger transcription factor STOP1 has a conserved and essential function in mediating plant Al resistance.Al stress induces STOP1 accumulation via post-transcriptional regulatory mechanisms.However,the upstream signaling pathway involved in Al-triggered STOP1 accumulation remains unclear.Here,we report that the MEKK1-MKK1/2-MPK4 cascade positively regulates STOP1 phosphorylation and stability.Mutations of MEKK1,MKK1/2,or MPK4 lead to decreased STOP1 stability and Al resistance.Al stress induces the kinase activity of MPK4,which interacts with and phosphorylates STOP1.The phosphorylation of STOP1 reduces its interaction with the F-box protein RAE1 that mediates STOP1 degradation,thereby leading to enhanced STOP1 stability and Al resistance.Taken together,our results suggest that the MEKK1-MKK1/2-MPK4 cascade is important for Al signaling and confers Al resistance through phosphorylation-mediated enhancement of STOP1 accumulation in Arabidopsis.展开更多
基金supported by the National Natural Science Foundation of China(grant nos.32170261 and 31870223 to C.-F.H.)the National Key Laboratory of Plant Molecular Genetics.
文摘Aluminum(Al)toxicity can seriously restrict crop production on acidic soils,which comprise 40%of the world’s potentially arable land.The zinc finger transcription factor STOP1 has a conserved and essential function in mediating plant Al resistance.Al stress induces STOP1 accumulation via post-transcriptional regulatory mechanisms.However,the upstream signaling pathway involved in Al-triggered STOP1 accumulation remains unclear.Here,we report that the MEKK1-MKK1/2-MPK4 cascade positively regulates STOP1 phosphorylation and stability.Mutations of MEKK1,MKK1/2,or MPK4 lead to decreased STOP1 stability and Al resistance.Al stress induces the kinase activity of MPK4,which interacts with and phosphorylates STOP1.The phosphorylation of STOP1 reduces its interaction with the F-box protein RAE1 that mediates STOP1 degradation,thereby leading to enhanced STOP1 stability and Al resistance.Taken together,our results suggest that the MEKK1-MKK1/2-MPK4 cascade is important for Al signaling and confers Al resistance through phosphorylation-mediated enhancement of STOP1 accumulation in Arabidopsis.