期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Stability analysis of backflling in subsiding area and optimization of the stoping sequence 被引量:7
1
作者 Ping Wang Huiqiang Li +1 位作者 Yan Li Bo Cheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第6期478-485,共8页
In underground mining by sublevel caving method, the deformation and damage of the surface induced by subsidence are the major challenging issues. The dynamic and soft backflling body increases the safety risks in the... In underground mining by sublevel caving method, the deformation and damage of the surface induced by subsidence are the major challenging issues. The dynamic and soft backflling body increases the safety risks in the subsiding area. In this paper, taking Zhangfushan iron mine as an example, the ore body and the general layout are focused on the safety of backflling of mined-out area. Then, we use the ANSYS software to construct a three-dimensional(3D) model for the mining area in the Zhangfushan iron mine. According to the simulation results of the initial mining stages, the ore body is stoped step by step as suggested in the design. The stability of the backflling is back analyzed based on the monitored displacements, considering the stress distribution to optimize the stoping sequence. The simulations show that a reasonable stoping sequence can minimize the concentration of high compressive stress and ensure the safety of stoping of the ore body. 展开更多
关键词 Mining engineering Backflling body Numerical simulations Stability analysis stoping sequence optimization
下载PDF
Volumetric analysis of rock mass instability around haulage drifts in underground mines 被引量:4
2
作者 Shahé Shnorhokian Bryce MacNeil Hani S.Mitri 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第1期60-71,共12页
Haulage networks are vital to underground mining operations as they constitute the arteries through which blasted ore is transported to surface. In the sublevel stoping method and its variations, haulage drifts are ex... Haulage networks are vital to underground mining operations as they constitute the arteries through which blasted ore is transported to surface. In the sublevel stoping method and its variations, haulage drifts are excavated in advance near the ore block that will be mined out. Numerical modeling is a technique that is frequently employed to assess the redistribution of mining-induced stresses, and to compare the impact of different stope sequence scenarios on haulage network stability. In this study,typical geological settings in the Canadian Shield were replicated in a numerical model with a steeplydipping tabular orebody striking EW. All other formations trended in the same direction except for two dykes on either side of the orebody with a WNW-ESE strike. Rock mass properties and in situ stress measurements from a case study mine were used to calibrate the model. Drifts and crosscuts were excavated in the footwall and two stope sequence scenarios-a diminishing pillar and a center-out one-were implemented in 24 mining stages. A combined volumetric-numerical analysis was conducted for two active levels by comparing the extent of unstable rock mass at each stage using shear,compressive, and tensile instability criteria. Comparisons were made between the orebody and the host rock, between the footwall and hanging wall, and between the two stope sequence scenarios. It was determined that in general, the center-out option provided a larger volume of instability with the shear criterion when compared to the diminishing pillar one(625,477 m~3 compared to 586,774 m~3 in the orebody; 588 m~3 compared to 403 m~3 in the host rock). However, the reverse was true for tensile(134,298 m~3 compared to 128,834 m~3 in the orebody; 91,347 m~3 compared to 67,655 m~3 in the host rock)instability where the diminishing pillar option had the more voluminous share. 展开更多
关键词 Haulage drifts Rock mass instability Volumetric analysis Stope sequences Numerical modeling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部