An experiment was conducted to investigate the effect of different initial pH on the storage characteristics and shelf life of liquid diet. 45 polypropylene bags were allotted to treatments 1, 2 and 3 on average, 100 ...An experiment was conducted to investigate the effect of different initial pH on the storage characteristics and shelf life of liquid diet. 45 polypropylene bags were allotted to treatments 1, 2 and 3 on average, 100 g diet and 200 g water were placed into each polypropylene bag, food-grade DL-lactic acid was added to each bag at a rate of 0.0 mL in treatment l, 1.2 mL in treatment 2 and 4.7 mL in treatment 3, air was artificially expelled from each bag prior to heat-sealing. All bags were placed into a cage, cooked with steam at 90~C for 30 rain under normal pressure, then taken out and stored from day 0 to 60 at room temperature. Results indicated that liquid diet in treatment 3 achieved the highest total sensory scores, the pH value had a tendency to decrease and the bacteria count had a tendency to increase in the liquid diet with the advancing of storage time with the advancing of storage time, lowering the initial pH of liquid diet decreased the bacteria count, the AFBl and ZEN concentrations and increased the starch gelatinization degree from day 30 to 60, liquid diet in treatment 3 had a lower (P〈0.01) bacteria count and a higher (P〈0.05) starch gelatinization degree at day 30 and 45 than liquid diet in treatment 1. In conclusion, lowering the initial pH of liquid diet with lactic acid to pH 4 could effectively improve the storage characteristics and shelf life of liquid diet.展开更多
Five kiwifruit varieties(Hongyang, Donghong, Jinyan, Cuiyu, Miliang1)in Hunan were picked and stored at room temperature. Sensory indicators(softening rate, decay rate, and firmness), nutritional quality(soluble solid...Five kiwifruit varieties(Hongyang, Donghong, Jinyan, Cuiyu, Miliang1)in Hunan were picked and stored at room temperature. Sensory indicators(softening rate, decay rate, and firmness), nutritional quality(soluble solid content, titratable acid, and VC), tissue cell aging indexes(malondialdehyde, membrane permeability),and activity of polyphenol oxidase(PPO) and peroxidase(POD) during storage were analyzed. Results showed that firmness of Hongyang, Miliang1, and Cuiyu decreased rapidly, particularly Hongyang. The firmness of Donghong and Jinyan decreased slowly, but the decrease of Jinyan was slower than that of Donghong. Softening rate and decay rate were significantly different among the varieties. To be specific, the softening rate and decay rate of Jinyan were lower than those of Hongyang. Soluble solid content rose at early stage and then declined. Soluble solid content was high in Hongyang after storage for 12 d and high in Donghong and Jinyan after storage for 15 d. Content of titratable acid dropped slowly. Maximum VC content of Donghong,Jinyan, and Cuiyu was higher than that of Hongyang and Miliang 1. The inflection point of relative conductivity increase increase of Jinyan appeared later than that of Hangyang. The MAD content of Jinyan and Donghong kept at a low level. Storage characteristics of different kiwifruit varieties were significant. Storage time was in the order of Hongyang < Miliang 1 < Cuiyu < Donghong < Jinyan. In summary,Hongyang, Cuiyu, and Miliang1 should not be stored for a long time, while longterm storage is favorable for Jinyan and Donghong.展开更多
Nanocrystalline Mg2Ni-type alloys with nominal compositions of Mg20Ni10–xCux(x=0,1,2,3,4,mass fraction,%) were synthesized by rapid quenching technique.The microstructures of the as-cast and quenched alloys were char...Nanocrystalline Mg2Ni-type alloys with nominal compositions of Mg20Ni10–xCux(x=0,1,2,3,4,mass fraction,%) were synthesized by rapid quenching technique.The microstructures of the as-cast and quenched alloys were characterized by XRD,SEM and HRTEM.The electrochemical hydrogen storage performances were tested by an automatic galvanostatic system.The hydriding and dehydriding kinetics of the alloys were measured using an automatically controlled Sieverts apparatus.The results show that all the as-quenched alloys hold the typical nanocrystalline structure and the rapid quenching does not change the major phase Mg2Ni.The rapid quenching significantly improves the electrochemical hydrogen storage capacity of the alloys,whereas it slightly impairs the cycling stability of the alloys.Additionally,the hydrogen absorption and desorption capacities of the alloys significantly increase with rising quenching rate.展开更多
The further electrification of various fields in production and daily life makes it a topic worthy of exploration to improve the performance of capacitors for a long time,including thin-film capacitors.The discharge e...The further electrification of various fields in production and daily life makes it a topic worthy of exploration to improve the performance of capacitors for a long time,including thin-film capacitors.The discharge energy density of thin-film capacitors that serves as one of the important types directly depends on electric field strength and the dielectric constant of the insulation material.However,it has long been a great challenge to improve the breakdown strength and dielectric constant simultaneously.Considering that boron nitride nanosheets(BNNS)possess superior insulation and thermal conductivity owing to wide band gap and 2-dimensional structure,a bilayer polymer film is prepared via coating BNNS by solution casting on surface of polyethylene terephthalate(PET)films.By revealing the bandgap and insulating behavior with UV absorption spectrum,leakage current,and finite element calculation,it is manifested that nanocoating contributes to enhance the bandgap of polymer films,thereby suppressing the charge injection by redirecting their transport from electrodes.Worthy to note that an ultrahigh breakdown field strength(~736 MV m^(−1)),an excellent discharge energy density(~8.77 J cm^(−3))and a prominent charge-discharge efficiency(~96.51%)are achieved concurrently,which is ascribed to the contribution of BNNS ultrathin layer.In addition,the modified PET films also have superior comprehensive performance at high temperatures(~120°C).The materials and methods here selected are easily accessible and facile,which are suitable for large-scale roll-to-roll process production,and are of certain significance to explore the methods about film modification suitable for commercial promotion.展开更多
1 Results LiNi0.8Co0.1+xMn0.1-xO2 cathodes with x=0,0.03 and 0.06 were prepared by firing a mixture of stoichiometric amounts of LiOH·H2O and coprecipitated Ni0.8Co0.1+xMn0.1-x(OH)2 at 800 ℃ for 15 h.Using these...1 Results LiNi0.8Co0.1+xMn0.1-xO2 cathodes with x=0,0.03 and 0.06 were prepared by firing a mixture of stoichiometric amounts of LiOH·H2O and coprecipitated Ni0.8Co0.1+xMn0.1-x(OH)2 at 800 ℃ for 15 h.Using these powders,their storage characteristics upon exposure to air and electrolytes at 90 ℃ were compared before charging and after charging to 4.3 V with a variation of the storage time.As the Co content (x) increased in the cathode,both the Ni2+ content in the lithium 3a sites,and the contents of the ...展开更多
We provides a novel approach to generate low-temperature atomic oxygen anions (O-) emission using the cesium oxide-doped 12CaO.7Al2O3 (Cs2O-doped C12A7). The maximal emission intensity of O- from the Cs2O-doped C1...We provides a novel approach to generate low-temperature atomic oxygen anions (O-) emission using the cesium oxide-doped 12CaO.7Al2O3 (Cs2O-doped C12A7). The maximal emission intensity of O- from the Cs2O-doped C12A7 at 700℃ and 800 V/cm reached about 0.54μA/cm2, which was about two times as strong as that from the un-doped C12A7 (0.23 μA/cm2) under the same condition. The initiative temperature of the O- emission from the Cs2O-doped C12A7 was about 500 ℃, which was also much lower than the initiative temperature from the un-doped C12A7 (570 ℃) in the given field of 800 V/cm. High pure O- emission close to 100% could be obtained from the Cs2O-doped C12A7 under the lower temperature (〈550℃). The emission features of the Cs2O-doped C12A7, including the emission distribution, temperature effect, and emission branching ratio have been investigated in detail and compared with the un-doped C12A7. The structure and storage characteristics of the resulting material were also investigated via X-ray diffraction and electron paramagnetic resonance. It was found that doping Cs2Oto C12A7 will lower the initiative emission temperature and enhance the emission intensity展开更多
Guanzhong Basin is a typical medium-low temperature geothermal field mainly controlled by geo-pressure in the west of China.The characteristics of hydrogen and oxygen isotopes were used to analyze the flow and storage...Guanzhong Basin is a typical medium-low temperature geothermal field mainly controlled by geo-pressure in the west of China.The characteristics of hydrogen and oxygen isotopes were used to analyze the flow and storage modes of geothermal resources in the basin.In this paper,the basin was divided into six geotectonic units,where a total of 121 samples were collected from geothermal wells and surface water bodies for the analysis of hydrogen-oxygen isotopes.Analytical results show that the isotopic signatures of hydrogen and oxygen throughout Guanzhong Basin reveal a trend of gradual increase from the basin edge areas to the basin center.In terms of recharge systems,the area in the south edge belongs to the geothermal system of Qinling Mountain piedmont,while to the north of Weihe fault is the geothermal system of North mountain piedmont,where the atmospheric temperature is about 0.2℃-1.8℃in the recharge areas.The main factors that affect the geothermal waterδ18O drifting include the depth of geothermal reservoir and temperature of geothermal reservoir,lithological characteristics,water-rock interaction,geothermal reservoir environment and residence time.Theδ18O-δD relation shows that the main source is the meteoric water,together with some sedimentary water,but there are no deep magmatic water and mantle water which recharge the geothermal water in the basin.Through examining the distribution pattern of hydrogen-oxygen isotopic signatures,the groundwater circulation model of this basin can be divided into open circulation type,semi-open type,closed type and sedimentary type.This provides some important information for rational exploitation of the geothermal resources.展开更多
(Ba(0.6) Sr(0.4))(0.85) Bi(0.1) TiO3 ceramics doped with x wt%CaZrO3(x= 0-10) were synthesized by solid-state reaction method. The effects of CaZrO3 amount on the dielectric properties and structure of(Ba...(Ba(0.6) Sr(0.4))(0.85) Bi(0.1) TiO3 ceramics doped with x wt%CaZrO3(x= 0-10) were synthesized by solid-state reaction method. The effects of CaZrO3 amount on the dielectric properties and structure of(Ba(0.6)Sr(0.4))(0.85) Bi(0.1) TiO3 ceramics were investigated. X-ray diffraction results indicated a pure cubic perovskite structure for all samples and that the lattice parameter increased till x=5 and then slightly decreased. A homogenous microstructure was observed with the addition of CaZrO3. Dielectric measurements revealed a relaxor-like characteristic for all samples and that the diffusivity γ reached the maximum value of 1.78 at x=5. With the addition of CaZrO3, the dielectric constant dependence on electric field was weakened, insulation resistivity enhanced and dielectric breakdown strength improved obviously and reached 19.9 k V/mm at x=7.5. In virtue of low dielectric loss(tan d〈0.001 5), moderate dielectric constant(er 〉1 500) and high breakdown strength(Eb 〉17.5 k V/mm), the CaZrO3 doped(Ba(0.6)Sr(0.4))0.85 Bi(0.1) TiO3 ceramic is a potential candidate material for high power electric applications.展开更多
Approximately one fifth of the world's plants are at risk of extinction.Of these,a significant number exist as populations of few individuals,with limited distribution ranges and under enormous pressure due to hab...Approximately one fifth of the world's plants are at risk of extinction.Of these,a significant number exist as populations of few individuals,with limited distribution ranges and under enormous pressure due to habitat destruction.In China,these most-at-risk species are described as 'plant species with extremely small populations'(PSESP).Implementing conservation action for such listed species is urgent.Storing seeds is one of the main means of ex situ conservation for flowering plants.Spore storage could provide a simple and economical method for fern ex situ conservation.Seed and spore germination in nature is a critical step in species regeneration and thus in situ conservation.But what is known about the seed and spore biology(storage and germination) of at-risk species? We have used China's PSESP(the first group listing) as a case study to understand the gaps in knowledge on propagule biology of threatened plant species.We found that whilst germination information is available for 28 species(23%of PSESP),storage characteristics are only known for 8%of PSESP(10 species).Moreover,we estimate that 60%of the listed species may require cryopreservation for long-term storage.We conclude that comparative biology studies are urgently needed on the world's most threatened taxa so that conservation action can progress beyond species listing.展开更多
Dielectric capacitors have a high power density,and are widely used in military and civilian life.The main problem lies in the serious deterioration of dielectric insulation performance at high temperatures.In this st...Dielectric capacitors have a high power density,and are widely used in military and civilian life.The main problem lies in the serious deterioration of dielectric insulation performance at high temperatures.In this study,a polycarbonate(PC)-based energy storage dielectric was designed with BN/SiO_(2)heterojunctions on its surface.Based on this structural design,a synergistic suppression of the carrier injection and transport was achieved,significantly improving the insulating properties of the polymer film.In particular,the composite film achieves optimal high-temperature energy-storage properties.The composite film can withstand an electric field intensity of 760 MV m^(-1)at 100℃and obtain an energy storage density of 8.32 J cm^(-3),while achieving a breakthrough energy storage performance even at 150℃(610 MV m^(-1),5.22 J cm^(-3)).Through adjustment of the heterojunction structure,free adjustment of the insulation performance of the material can be realized;this is of great significance for the optimization of the material properties.展开更多
Gas with high pressure is widely used at present as fuel storage mode for different hydrogen vehicles. Differenttypes of materials are used for constructing these hydrogen pressure vessels. An aluminum lined vessel an...Gas with high pressure is widely used at present as fuel storage mode for different hydrogen vehicles. Differenttypes of materials are used for constructing these hydrogen pressure vessels. An aluminum lined vessel and typicallycarbon fiber reinforced plastic (CFRP) materials are commercially used in hydrogen vessels. An aluminumlined vessel is easy to construct and posses high thermal conductivity compared to other commercially availablevessels. However, compared to CFRP lined vessel, it has low strength capacity and safety factors. Therefore,nowadays, CFRP lined vessels are becoming more popular in hydrogen vehicles. Moreover, CFRP lined vesselhas an advantage of light weight. CFRP, although, has many desirable properties in reducing the weight and inincreasing the strength, it is also necessary to keep the material temperature below 85 ℃ for maintaining stringentsafety requirements. While filling process occurs, the temperature can be exceeded due to the compression worksof the gas flow. Therefore, it is very important to optimize the hydrogen filling system to avoid the crossing of thecritical limit of the temperature rise. Computer-aided simulation has been conducted to characterize the hydrogenfilling to optimize the technique. Three types of hydrogen vessels with different volumes have been analyzed foroptimizing the charging characteristics of hydrogen to test vessels. Gas temperatures are measured inside representativevessels in the supply reservoirs (H2 storages) and at the inlet to the test tank during filling.展开更多
基金supported by the Jiangxi Key Technology R&D Program,China(2010CCA01300,20121BBF60032)
文摘An experiment was conducted to investigate the effect of different initial pH on the storage characteristics and shelf life of liquid diet. 45 polypropylene bags were allotted to treatments 1, 2 and 3 on average, 100 g diet and 200 g water were placed into each polypropylene bag, food-grade DL-lactic acid was added to each bag at a rate of 0.0 mL in treatment l, 1.2 mL in treatment 2 and 4.7 mL in treatment 3, air was artificially expelled from each bag prior to heat-sealing. All bags were placed into a cage, cooked with steam at 90~C for 30 rain under normal pressure, then taken out and stored from day 0 to 60 at room temperature. Results indicated that liquid diet in treatment 3 achieved the highest total sensory scores, the pH value had a tendency to decrease and the bacteria count had a tendency to increase in the liquid diet with the advancing of storage time with the advancing of storage time, lowering the initial pH of liquid diet decreased the bacteria count, the AFBl and ZEN concentrations and increased the starch gelatinization degree from day 30 to 60, liquid diet in treatment 3 had a lower (P〈0.01) bacteria count and a higher (P〈0.05) starch gelatinization degree at day 30 and 45 than liquid diet in treatment 1. In conclusion, lowering the initial pH of liquid diet with lactic acid to pH 4 could effectively improve the storage characteristics and shelf life of liquid diet.
文摘Five kiwifruit varieties(Hongyang, Donghong, Jinyan, Cuiyu, Miliang1)in Hunan were picked and stored at room temperature. Sensory indicators(softening rate, decay rate, and firmness), nutritional quality(soluble solid content, titratable acid, and VC), tissue cell aging indexes(malondialdehyde, membrane permeability),and activity of polyphenol oxidase(PPO) and peroxidase(POD) during storage were analyzed. Results showed that firmness of Hongyang, Miliang1, and Cuiyu decreased rapidly, particularly Hongyang. The firmness of Donghong and Jinyan decreased slowly, but the decrease of Jinyan was slower than that of Donghong. Softening rate and decay rate were significantly different among the varieties. To be specific, the softening rate and decay rate of Jinyan were lower than those of Hongyang. Soluble solid content rose at early stage and then declined. Soluble solid content was high in Hongyang after storage for 12 d and high in Donghong and Jinyan after storage for 15 d. Content of titratable acid dropped slowly. Maximum VC content of Donghong,Jinyan, and Cuiyu was higher than that of Hongyang and Miliang 1. The inflection point of relative conductivity increase increase of Jinyan appeared later than that of Hangyang. The MAD content of Jinyan and Donghong kept at a low level. Storage characteristics of different kiwifruit varieties were significant. Storage time was in the order of Hongyang < Miliang 1 < Cuiyu < Donghong < Jinyan. In summary,Hongyang, Cuiyu, and Miliang1 should not be stored for a long time, while longterm storage is favorable for Jinyan and Donghong.
基金Project(2007AA03Z227) supported by High-tech Research and Development Program of ChinaProjects(50871050,50701011) supported by the National Natural Science Foundation of China+1 种基金Project(200711020703) supported by the Natural Science Foundation of Inner Mongolia,ChinaProject(NJzy08071) supported by High Education Science Research Project of Inner Mongolia,China
文摘Nanocrystalline Mg2Ni-type alloys with nominal compositions of Mg20Ni10–xCux(x=0,1,2,3,4,mass fraction,%) were synthesized by rapid quenching technique.The microstructures of the as-cast and quenched alloys were characterized by XRD,SEM and HRTEM.The electrochemical hydrogen storage performances were tested by an automatic galvanostatic system.The hydriding and dehydriding kinetics of the alloys were measured using an automatically controlled Sieverts apparatus.The results show that all the as-quenched alloys hold the typical nanocrystalline structure and the rapid quenching does not change the major phase Mg2Ni.The rapid quenching significantly improves the electrochemical hydrogen storage capacity of the alloys,whereas it slightly impairs the cycling stability of the alloys.Additionally,the hydrogen absorption and desorption capacities of the alloys significantly increase with rising quenching rate.
基金supported by the National Natural Science Foundation of China(Grant Nos.51937007,and 51921005)National Key Research and Development Program of China(No.2021YFB2401502).
文摘The further electrification of various fields in production and daily life makes it a topic worthy of exploration to improve the performance of capacitors for a long time,including thin-film capacitors.The discharge energy density of thin-film capacitors that serves as one of the important types directly depends on electric field strength and the dielectric constant of the insulation material.However,it has long been a great challenge to improve the breakdown strength and dielectric constant simultaneously.Considering that boron nitride nanosheets(BNNS)possess superior insulation and thermal conductivity owing to wide band gap and 2-dimensional structure,a bilayer polymer film is prepared via coating BNNS by solution casting on surface of polyethylene terephthalate(PET)films.By revealing the bandgap and insulating behavior with UV absorption spectrum,leakage current,and finite element calculation,it is manifested that nanocoating contributes to enhance the bandgap of polymer films,thereby suppressing the charge injection by redirecting their transport from electrodes.Worthy to note that an ultrahigh breakdown field strength(~736 MV m^(−1)),an excellent discharge energy density(~8.77 J cm^(−3))and a prominent charge-discharge efficiency(~96.51%)are achieved concurrently,which is ascribed to the contribution of BNNS ultrathin layer.In addition,the modified PET films also have superior comprehensive performance at high temperatures(~120°C).The materials and methods here selected are easily accessible and facile,which are suitable for large-scale roll-to-roll process production,and are of certain significance to explore the methods about film modification suitable for commercial promotion.
文摘1 Results LiNi0.8Co0.1+xMn0.1-xO2 cathodes with x=0,0.03 and 0.06 were prepared by firing a mixture of stoichiometric amounts of LiOH·H2O and coprecipitated Ni0.8Co0.1+xMn0.1-x(OH)2 at 800 ℃ for 15 h.Using these powders,their storage characteristics upon exposure to air and electrolytes at 90 ℃ were compared before charging and after charging to 4.3 V with a variation of the storage time.As the Co content (x) increased in the cathode,both the Ni2+ content in the lithium 3a sites,and the contents of the ...
基金This work is supported by the National Natural Science Foundation of China (No.50772107), the National High Tech Research and Development Program (No.2009AA05Z435), and the National Basic Research Program of the Ministry of Science and Technology of China (No.2007CB210206).
文摘We provides a novel approach to generate low-temperature atomic oxygen anions (O-) emission using the cesium oxide-doped 12CaO.7Al2O3 (Cs2O-doped C12A7). The maximal emission intensity of O- from the Cs2O-doped C12A7 at 700℃ and 800 V/cm reached about 0.54μA/cm2, which was about two times as strong as that from the un-doped C12A7 (0.23 μA/cm2) under the same condition. The initiative temperature of the O- emission from the Cs2O-doped C12A7 was about 500 ℃, which was also much lower than the initiative temperature from the un-doped C12A7 (570 ℃) in the given field of 800 V/cm. High pure O- emission close to 100% could be obtained from the Cs2O-doped C12A7 under the lower temperature (〈550℃). The emission features of the Cs2O-doped C12A7, including the emission distribution, temperature effect, and emission branching ratio have been investigated in detail and compared with the un-doped C12A7. The structure and storage characteristics of the resulting material were also investigated via X-ray diffraction and electron paramagnetic resonance. It was found that doping Cs2Oto C12A7 will lower the initiative emission temperature and enhance the emission intensity
基金funded by National Key R&D Program of China(Grant No.2019YFB1504101)National Natural Science Foundation of China(No.41602271)China Geological Survey(No.DD20160207,DD20189112)。
文摘Guanzhong Basin is a typical medium-low temperature geothermal field mainly controlled by geo-pressure in the west of China.The characteristics of hydrogen and oxygen isotopes were used to analyze the flow and storage modes of geothermal resources in the basin.In this paper,the basin was divided into six geotectonic units,where a total of 121 samples were collected from geothermal wells and surface water bodies for the analysis of hydrogen-oxygen isotopes.Analytical results show that the isotopic signatures of hydrogen and oxygen throughout Guanzhong Basin reveal a trend of gradual increase from the basin edge areas to the basin center.In terms of recharge systems,the area in the south edge belongs to the geothermal system of Qinling Mountain piedmont,while to the north of Weihe fault is the geothermal system of North mountain piedmont,where the atmospheric temperature is about 0.2℃-1.8℃in the recharge areas.The main factors that affect the geothermal waterδ18O drifting include the depth of geothermal reservoir and temperature of geothermal reservoir,lithological characteristics,water-rock interaction,geothermal reservoir environment and residence time.Theδ18O-δD relation shows that the main source is the meteoric water,together with some sedimentary water,but there are no deep magmatic water and mantle water which recharge the geothermal water in the basin.Through examining the distribution pattern of hydrogen-oxygen isotopic signatures,the groundwater circulation model of this basin can be divided into open circulation type,semi-open type,closed type and sedimentary type.This provides some important information for rational exploitation of the geothermal resources.
基金Funded by the National Natural Science Foundation of China(No.51302093)the Fundamental Research Funds for the Central Universities of China(Nos.2014TS046,2015MS017)
文摘(Ba(0.6) Sr(0.4))(0.85) Bi(0.1) TiO3 ceramics doped with x wt%CaZrO3(x= 0-10) were synthesized by solid-state reaction method. The effects of CaZrO3 amount on the dielectric properties and structure of(Ba(0.6)Sr(0.4))(0.85) Bi(0.1) TiO3 ceramics were investigated. X-ray diffraction results indicated a pure cubic perovskite structure for all samples and that the lattice parameter increased till x=5 and then slightly decreased. A homogenous microstructure was observed with the addition of CaZrO3. Dielectric measurements revealed a relaxor-like characteristic for all samples and that the diffusivity γ reached the maximum value of 1.78 at x=5. With the addition of CaZrO3, the dielectric constant dependence on electric field was weakened, insulation resistivity enhanced and dielectric breakdown strength improved obviously and reached 19.9 k V/mm at x=7.5. In virtue of low dielectric loss(tan d〈0.001 5), moderate dielectric constant(er 〉1 500) and high breakdown strength(Eb 〉17.5 k V/mm), the CaZrO3 doped(Ba(0.6)Sr(0.4))0.85 Bi(0.1) TiO3 ceramic is a potential candidate material for high power electric applications.
基金Funding (No. U1302262) to W.B. Sun from the NSFC-Yunnan joint fund on key projects is gratefully acknowledgedThe Royal Botanic Gardens, Kew receives grant-in-aid from Defra+1 种基金This joint work was undertaken under the Memorandum of Agreement (2014e24) on Plant and Fungal Science between the Chinese Academy of Sciences and the Trustees of the Royal Botanic Gardens, KewHWP thanks Darwin Initiative Project 21-003 on cycads for funding
文摘Approximately one fifth of the world's plants are at risk of extinction.Of these,a significant number exist as populations of few individuals,with limited distribution ranges and under enormous pressure due to habitat destruction.In China,these most-at-risk species are described as 'plant species with extremely small populations'(PSESP).Implementing conservation action for such listed species is urgent.Storing seeds is one of the main means of ex situ conservation for flowering plants.Spore storage could provide a simple and economical method for fern ex situ conservation.Seed and spore germination in nature is a critical step in species regeneration and thus in situ conservation.But what is known about the seed and spore biology(storage and germination) of at-risk species? We have used China's PSESP(the first group listing) as a case study to understand the gaps in knowledge on propagule biology of threatened plant species.We found that whilst germination information is available for 28 species(23%of PSESP),storage characteristics are only known for 8%of PSESP(10 species).Moreover,we estimate that 60%of the listed species may require cryopreservation for long-term storage.We conclude that comparative biology studies are urgently needed on the world's most threatened taxa so that conservation action can progress beyond species listing.
基金This research was funded by the National Natural Science Foundation of China(No.U20A20308,52177017,and 51977050)Natural Science Foundation of Heilongjiang Province of China(No.YQ2021E036 and ZD2020E009)+3 种基金China Postdoctoral Science Foundation(No.2020T130156)Heilongjiang Postdoctoral Financial Assistance(No.LBHZ18098)Fundamental Research Foundation for Universities of Heilongjiang Province(No.2019-KYYWF-0207 and 2018-KYYWF-1624)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020177).
文摘Dielectric capacitors have a high power density,and are widely used in military and civilian life.The main problem lies in the serious deterioration of dielectric insulation performance at high temperatures.In this study,a polycarbonate(PC)-based energy storage dielectric was designed with BN/SiO_(2)heterojunctions on its surface.Based on this structural design,a synergistic suppression of the carrier injection and transport was achieved,significantly improving the insulating properties of the polymer film.In particular,the composite film achieves optimal high-temperature energy-storage properties.The composite film can withstand an electric field intensity of 760 MV m^(-1)at 100℃and obtain an energy storage density of 8.32 J cm^(-3),while achieving a breakthrough energy storage performance even at 150℃(610 MV m^(-1),5.22 J cm^(-3)).Through adjustment of the heterojunction structure,free adjustment of the insulation performance of the material can be realized;this is of great significance for the optimization of the material properties.
文摘Gas with high pressure is widely used at present as fuel storage mode for different hydrogen vehicles. Differenttypes of materials are used for constructing these hydrogen pressure vessels. An aluminum lined vessel and typicallycarbon fiber reinforced plastic (CFRP) materials are commercially used in hydrogen vessels. An aluminumlined vessel is easy to construct and posses high thermal conductivity compared to other commercially availablevessels. However, compared to CFRP lined vessel, it has low strength capacity and safety factors. Therefore,nowadays, CFRP lined vessels are becoming more popular in hydrogen vehicles. Moreover, CFRP lined vesselhas an advantage of light weight. CFRP, although, has many desirable properties in reducing the weight and inincreasing the strength, it is also necessary to keep the material temperature below 85 ℃ for maintaining stringentsafety requirements. While filling process occurs, the temperature can be exceeded due to the compression worksof the gas flow. Therefore, it is very important to optimize the hydrogen filling system to avoid the crossing of thecritical limit of the temperature rise. Computer-aided simulation has been conducted to characterize the hydrogenfilling to optimize the technique. Three types of hydrogen vessels with different volumes have been analyzed foroptimizing the charging characteristics of hydrogen to test vessels. Gas temperatures are measured inside representativevessels in the supply reservoirs (H2 storages) and at the inlet to the test tank during filling.