The long-term goal of the 2015 Paris Agreement is to limit global warming to well below 2 ℃above pre-industrial levels and to pursue efforts to limit it to 1.5 ℃. However, for climate mitigation and adaption efforts...The long-term goal of the 2015 Paris Agreement is to limit global warming to well below 2 ℃above pre-industrial levels and to pursue efforts to limit it to 1.5 ℃. However, for climate mitigation and adaption efforts, further studies are still needed to understand the regional consequences between the two global warming limits. Here we provide an assessment of changes in temperature extremes over China (relative to 1986-2005) at 1.5 ℃ and 2 ℃ warming levels (relative to 1861-1900) by using the 5th phase of the Coupled Model Intercomparison Project (CMIP5) models under three RCP scenarios (RCP2.6, RCP4.5, RCP8.5). Results show that the increases in mean temperature and temperature extremes over China are greater than that in global mean temperature. With respect to 1986-2005, the temperature of hottest day (TXx) and coldest night (TNn) are projected to increase about 1/1.6 ℃ and 1.1/1.8 ℃, whereas warm days (TX90p) and warm spell duration (WSDI) will increase about 7.5/13.8% and 15/30 d for the 1.5/2 ℃ global warming target, respectively. Under an additional 0.5 ℃ global warming, the projected increases of temperature in warmest day/night and coldest day/night are both more than 0.5 ℃ across almost the whole China. In Northwest China, Northeast China and the Tibetan Plateau, the projected changes are particularly sensitive to the additional 0.5 ℃ global warming, for example, multi-model mean increase in coldest day (TXn) and coldest night (TNn) will be about 2 times higher than a change of 0.5 ℃ global warming. Although the area-averaged changes in temperature extremes are very similar for different scenarios, spatial hotspot still exists, such as in Northwest China and North China, the increases in temperatures are apparently larger in RCP8.5 than that in RCP4.5.展开更多
Extreme high temperature(EHT)events are among the most impact-related consequences related to climate change,especially for China,a nation with a large population that is vulnerable to the climate warming.Based on the...Extreme high temperature(EHT)events are among the most impact-related consequences related to climate change,especially for China,a nation with a large population that is vulnerable to the climate warming.Based on the latest Coupled Model Intercomparison Project Phase 6(CMIP6),this study assesses future EHT changes across China at five specific global warming thresholds(1.5℃-5℃).The results indicate that global mean temperature will increase by 1.5℃/2℃ before 2030/2050 relative to pre-industrial levels(1861-1900)under three future scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5),and warming will occur faster under SSP5-8.5 compared to SSP1-2.6 and SSP2-4.5.Under SSP5-8.5,global warming will eventually exceed 5℃ by 2100,while under SSP1-2.6,it will stabilize around 2℃ after 2050.In China,most of the areas where warming exceeds global average levels will be located in Tibet and northern China(Northwest China,North China and Northeast China),covering 50%-70%of the country.Furthermore,about 0.19-0.44 billion people(accounting for 16%-41%of the national population)will experience warming above the global average.Compared to present-day(1995-2014),the warmest day(TXx)will increase most notably in northern China,while the number of warm days(TX90p)and warm spell duration indicator(WSDI)will increase most profoundly in southern China.For example,relative to the present-day,TXx will increase by 1℃-5℃ in northern China,and TX90p(WSDI)will increase by 25-150(10-80)days in southern China at 1.5℃-5℃ global warming.Compared to 2℃-5℃,limiting global warming to 1.5℃ will help avoid about 36%-87%of the EHT increases in China.展开更多
The Paris Agreement aims to keep global warming to well below 2℃ above pre-industrial levels and to pursue efforts to limit it to 1.5℃,recognizing this will reduce the risks of natural disasters significantly.As cha...The Paris Agreement aims to keep global warming to well below 2℃ above pre-industrial levels and to pursue efforts to limit it to 1.5℃,recognizing this will reduce the risks of natural disasters significantly.As changes in the risks of temperature extremes are often associated with changes in the temperature probability distribution,further analysis is still needed to improve understanding of the warm extremes over China.In this study,changes in the occurrence probability of temperature extremes and statistic characteristics of the temperature distribution are investigated using the fifth phase of the Coupled Model Intercomparison Project(CMIP5)multimodel simulations from 1861 to 2100.The risks of the once-in-100-year TXx and TNx events are projected to increase by 14.4 and 31.4 times at 1.5℃ warming.Even,the corresponding risks under 2℃ global warming are 23.3 and 50.6,implying that the once-in-100-year TXx and TNx events are expected to occur about every 5 and 2 years over China,respectively.The Tibetan Plateau,Northwest China and south of the Yangtze River are in greater risks suffering hot extremes(both day and night extremes).Changes in the occurrence probability of warm extremes are generally well explained by the combination of the shifts in location and scale parameters in areas with grown variability,i.e.,the Tibetan Plateau for TXx,south of the Yangtze River for both TXx and TNx.The location(scale)parameter leading the risks of once-in-20-year TXx to increase by more than 5(0.25)and 3(0.75)times under 2℃ warming in the Tibetan Plateau and south of the Yangtze River,respectively.The location parameter is more important for regions with decreased variability e.g.,the Tibetan Plateau for TNx,Northwest China for both TXx and TNx,with risks increase by more than 3,6 and 4 times due to changes in location.展开更多
This paper investigates the equilibrium lattice parameters, heat capacity, thermal expansion coefficient, bulk modulus and its pressure derivative of LaNi5 crystal by using the first-principles plane-wave pseudopotent...This paper investigates the equilibrium lattice parameters, heat capacity, thermal expansion coefficient, bulk modulus and its pressure derivative of LaNi5 crystal by using the first-principles plane-wave pseudopotential method in the GGA-PBE generalized gradient approximation as well as the quasi-harmonic Debye model. The dependences of bulk modulus on temperature and on pressure are investigated. For the first time it analyses the relationships between bulk modulus B and temperature T up to 1000 K, the relationship between bulk modulus B and pressure at different temperatures are worked out. The pressure dependences of heat capacity Cv and thermal expansion α at various temperatures are also analysed. Finally, the Debye temperatures of LaNi5 at different pressures are successfully obtained. The calculated results are in excellent agreement with the experimental data.展开更多
基金We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table l) for producing and making available their model output. This research is supported by the National Key Research and Development Program of China (2017YFA0603804) and the State Key Program of National Natural Science Foundation of China (41230528).
文摘The long-term goal of the 2015 Paris Agreement is to limit global warming to well below 2 ℃above pre-industrial levels and to pursue efforts to limit it to 1.5 ℃. However, for climate mitigation and adaption efforts, further studies are still needed to understand the regional consequences between the two global warming limits. Here we provide an assessment of changes in temperature extremes over China (relative to 1986-2005) at 1.5 ℃ and 2 ℃ warming levels (relative to 1861-1900) by using the 5th phase of the Coupled Model Intercomparison Project (CMIP5) models under three RCP scenarios (RCP2.6, RCP4.5, RCP8.5). Results show that the increases in mean temperature and temperature extremes over China are greater than that in global mean temperature. With respect to 1986-2005, the temperature of hottest day (TXx) and coldest night (TNn) are projected to increase about 1/1.6 ℃ and 1.1/1.8 ℃, whereas warm days (TX90p) and warm spell duration (WSDI) will increase about 7.5/13.8% and 15/30 d for the 1.5/2 ℃ global warming target, respectively. Under an additional 0.5 ℃ global warming, the projected increases of temperature in warmest day/night and coldest day/night are both more than 0.5 ℃ across almost the whole China. In Northwest China, Northeast China and the Tibetan Plateau, the projected changes are particularly sensitive to the additional 0.5 ℃ global warming, for example, multi-model mean increase in coldest day (TXn) and coldest night (TNn) will be about 2 times higher than a change of 0.5 ℃ global warming. Although the area-averaged changes in temperature extremes are very similar for different scenarios, spatial hotspot still exists, such as in Northwest China and North China, the increases in temperatures are apparently larger in RCP8.5 than that in RCP4.5.
基金supported by the National Key Research and Development Program of China(2017YFA0603804)the National Natural Science Foundation of China(41831174 and 41430528)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX19_1026)Guwei ZHANG was supported by the China Scholarship Council(NO.201908320503)。
文摘Extreme high temperature(EHT)events are among the most impact-related consequences related to climate change,especially for China,a nation with a large population that is vulnerable to the climate warming.Based on the latest Coupled Model Intercomparison Project Phase 6(CMIP6),this study assesses future EHT changes across China at five specific global warming thresholds(1.5℃-5℃).The results indicate that global mean temperature will increase by 1.5℃/2℃ before 2030/2050 relative to pre-industrial levels(1861-1900)under three future scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5),and warming will occur faster under SSP5-8.5 compared to SSP1-2.6 and SSP2-4.5.Under SSP5-8.5,global warming will eventually exceed 5℃ by 2100,while under SSP1-2.6,it will stabilize around 2℃ after 2050.In China,most of the areas where warming exceeds global average levels will be located in Tibet and northern China(Northwest China,North China and Northeast China),covering 50%-70%of the country.Furthermore,about 0.19-0.44 billion people(accounting for 16%-41%of the national population)will experience warming above the global average.Compared to present-day(1995-2014),the warmest day(TXx)will increase most notably in northern China,while the number of warm days(TX90p)and warm spell duration indicator(WSDI)will increase most profoundly in southern China.For example,relative to the present-day,TXx will increase by 1℃-5℃ in northern China,and TX90p(WSDI)will increase by 25-150(10-80)days in southern China at 1.5℃-5℃ global warming.Compared to 2℃-5℃,limiting global warming to 1.5℃ will help avoid about 36%-87%of the EHT increases in China.
基金supported by the National Key Research and Development Program of China(2017YFA0603804 and 2016YFA0600402).
文摘The Paris Agreement aims to keep global warming to well below 2℃ above pre-industrial levels and to pursue efforts to limit it to 1.5℃,recognizing this will reduce the risks of natural disasters significantly.As changes in the risks of temperature extremes are often associated with changes in the temperature probability distribution,further analysis is still needed to improve understanding of the warm extremes over China.In this study,changes in the occurrence probability of temperature extremes and statistic characteristics of the temperature distribution are investigated using the fifth phase of the Coupled Model Intercomparison Project(CMIP5)multimodel simulations from 1861 to 2100.The risks of the once-in-100-year TXx and TNx events are projected to increase by 14.4 and 31.4 times at 1.5℃ warming.Even,the corresponding risks under 2℃ global warming are 23.3 and 50.6,implying that the once-in-100-year TXx and TNx events are expected to occur about every 5 and 2 years over China,respectively.The Tibetan Plateau,Northwest China and south of the Yangtze River are in greater risks suffering hot extremes(both day and night extremes).Changes in the occurrence probability of warm extremes are generally well explained by the combination of the shifts in location and scale parameters in areas with grown variability,i.e.,the Tibetan Plateau for TXx,south of the Yangtze River for both TXx and TNx.The location(scale)parameter leading the risks of once-in-20-year TXx to increase by more than 5(0.25)and 3(0.75)times under 2℃ warming in the Tibetan Plateau and south of the Yangtze River,respectively.The location parameter is more important for regions with decreased variability e.g.,the Tibetan Plateau for TNx,Northwest China for both TXx and TNx,with risks increase by more than 3,6 and 4 times due to changes in location.
基金supported by the National Natural Science Foundation of China (Grant No 60777012)the Program for Science &Technology Innovation Talents in Universities of Henan Province in China (Grant No 2008HASTIT008)
文摘This paper investigates the equilibrium lattice parameters, heat capacity, thermal expansion coefficient, bulk modulus and its pressure derivative of LaNi5 crystal by using the first-principles plane-wave pseudopotential method in the GGA-PBE generalized gradient approximation as well as the quasi-harmonic Debye model. The dependences of bulk modulus on temperature and on pressure are investigated. For the first time it analyses the relationships between bulk modulus B and temperature T up to 1000 K, the relationship between bulk modulus B and pressure at different temperatures are worked out. The pressure dependences of heat capacity Cv and thermal expansion α at various temperatures are also analysed. Finally, the Debye temperatures of LaNi5 at different pressures are successfully obtained. The calculated results are in excellent agreement with the experimental data.