In this study, the differences in annual rainstorm changes in the Second Songhua River Basin and the Nenjiang River basin and their causes were compared from the perspective of mountain effects. The following results ...In this study, the differences in annual rainstorm changes in the Second Songhua River Basin and the Nenjiang River basin and their causes were compared from the perspective of mountain effects. The following results were drawn: (1) Altitude effect is the primary factor leading to increased rainstorms in the southern source; (2) Slope effect primarily leads to differences of the weather systems in the two sources, and thus cause the difference of the rainstorms; (3) Slope effect is responsible for the greater fluctuation in the observed floods in the southern source. These landform differences eventually lead to the differences in the characteristics of floods in the southern and northern sources. Commensurability method was used to identify the period of rainstorms in the southern and northern sources. The results showed that although rainstorms do not appear at the same time in the two sources they are characteristic of a 10 years' period in both areas. These results can serve as hydrological references for flood control and long-term flood disaster predictions.展开更多
This research deals with the characterization of areas associated with flash floods and erosion caused by severe rainfall storm and sediment transport and accumulation using topographic attributes and profiles, spectr...This research deals with the characterization of areas associated with flash floods and erosion caused by severe rainfall storm and sediment transport and accumulation using topographic attributes and profiles, spectral indices (SI), and principal component analysis (PCA). To achieve our objectives, topographic attributes and profiles were retrieved from ASTER-V2 DEM. PCA and nine SI were derived from two Landsat-OLI images acquired before and after the flood-storm. The images data were atmospherically corrected, sensor radiometric drift calibrated, and geometric and topographic distortions rectified. For validation purposes, the acquired photos during the flood-storm, lithological and geological maps were used. The analysis of approximately 100 colour composite combinations in the RGB system permitted the selection of two combinations due to their potential for characterizing soil erosion classes and sediment accumulation. The first considers the “Intensity, NDWI and NMDI”, while the second associates form index (FI), brightness index (BI) and NDWI. These two combinations provide very good separating power between different levels of soil erosion and degradation. Moreover, the derived erosion risk and sediment accumulation map based on the selected spectral indices segmentation and topographic attributes and profiles illustrated the tendency of water accumulation in the landscape, and highlighted areas prone to both fast moving and pooling water. In addition, it demonstrated that the rainfall, the topographic morphology and the lithology are the major contributing factors for flash flooding, catastrophic inundation, and erosion risk in the study area. The runoff-water power delivers vulnerable topsoil and contributes strongly to the erosion process, and then transports soil material and sediment to the plain areas through waterpower and gravity. The originality of this research resides in its simplicity and rapidity to provide a solid basis strategy for regional policies to address the real causes of problems and risks in developing countries. Certainly, it can help in the improvement of the management of water regulation structures to develop a methodology to maximize the water storage capacity and to reduce the risks caused by floods in the Moroccan Atlas Mountain (Guelmim region).展开更多
气候变化下台风风暴潮出现频次增加,形成的暴雨洪水对水库大坝安全产生极大威胁。由于部分地区实测流量资料缺少,基于雨量资料的随机模型与水文模型耦合模拟洪水过程线的研究亟待发展。针对现有小流域流量资料缺少问题,研究了基于降雨...气候变化下台风风暴潮出现频次增加,形成的暴雨洪水对水库大坝安全产生极大威胁。由于部分地区实测流量资料缺少,基于雨量资料的随机模型与水文模型耦合模拟洪水过程线的研究亟待发展。针对现有小流域流量资料缺少问题,研究了基于降雨随机模型与水文模型的Copula-LM-HMS耦联模型,来模拟入库洪水并计算水库大坝洪水漫顶风险率。该模型通过Copula函数与拉丁超立方-蒙特卡罗抽样(Latin Hypercube-Monte Carlo Simulation)生成流域多组7日降雨数据,并通过变倍比放大法缩放处理得到相应降雨序列,利用HEC-HMS水文模型模拟洪水过程线并结合调洪演算得到坝前最高水位,同时考虑风浪作用来模拟台风情景下的库水位变化情况,计算大坝洪水漫顶风险率,并分析不同组合条件对洪水漫顶风险率的影响。余姚市四明湖水库实例分析表明,构建的Copula-LM-HMS耦合模型计算得到的拦河坝在未来台风情境下无漫顶风险,自溃坝最小漫顶风险为0.22%,最大漫顶风险达到2.68%;洪水漫顶风险与降雨分布及起调水位有关,同时风浪作用对洪水漫顶风险影响较大。基于耦合模型进行中小流域洪水漫顶风险率计算,不仅能考虑降雨系列之间的相关性、流域地形特征与实际调洪规则,还可延长无流量资料地区水库大坝应对台风情境下洪水风险的预报期,为保证水库大坝应对未来气候变化影响下的运行安全提供参考。展开更多
基金supported by the Application Foundation Item of Science and Technology Department of Jilin Province (Grant No. 2011-05013)the National Natural Science Foundation of China (Grant No. 50879028)
文摘In this study, the differences in annual rainstorm changes in the Second Songhua River Basin and the Nenjiang River basin and their causes were compared from the perspective of mountain effects. The following results were drawn: (1) Altitude effect is the primary factor leading to increased rainstorms in the southern source; (2) Slope effect primarily leads to differences of the weather systems in the two sources, and thus cause the difference of the rainstorms; (3) Slope effect is responsible for the greater fluctuation in the observed floods in the southern source. These landform differences eventually lead to the differences in the characteristics of floods in the southern and northern sources. Commensurability method was used to identify the period of rainstorms in the southern and northern sources. The results showed that although rainstorms do not appear at the same time in the two sources they are characteristic of a 10 years' period in both areas. These results can serve as hydrological references for flood control and long-term flood disaster predictions.
文摘This research deals with the characterization of areas associated with flash floods and erosion caused by severe rainfall storm and sediment transport and accumulation using topographic attributes and profiles, spectral indices (SI), and principal component analysis (PCA). To achieve our objectives, topographic attributes and profiles were retrieved from ASTER-V2 DEM. PCA and nine SI were derived from two Landsat-OLI images acquired before and after the flood-storm. The images data were atmospherically corrected, sensor radiometric drift calibrated, and geometric and topographic distortions rectified. For validation purposes, the acquired photos during the flood-storm, lithological and geological maps were used. The analysis of approximately 100 colour composite combinations in the RGB system permitted the selection of two combinations due to their potential for characterizing soil erosion classes and sediment accumulation. The first considers the “Intensity, NDWI and NMDI”, while the second associates form index (FI), brightness index (BI) and NDWI. These two combinations provide very good separating power between different levels of soil erosion and degradation. Moreover, the derived erosion risk and sediment accumulation map based on the selected spectral indices segmentation and topographic attributes and profiles illustrated the tendency of water accumulation in the landscape, and highlighted areas prone to both fast moving and pooling water. In addition, it demonstrated that the rainfall, the topographic morphology and the lithology are the major contributing factors for flash flooding, catastrophic inundation, and erosion risk in the study area. The runoff-water power delivers vulnerable topsoil and contributes strongly to the erosion process, and then transports soil material and sediment to the plain areas through waterpower and gravity. The originality of this research resides in its simplicity and rapidity to provide a solid basis strategy for regional policies to address the real causes of problems and risks in developing countries. Certainly, it can help in the improvement of the management of water regulation structures to develop a methodology to maximize the water storage capacity and to reduce the risks caused by floods in the Moroccan Atlas Mountain (Guelmim region).
文摘气候变化下台风风暴潮出现频次增加,形成的暴雨洪水对水库大坝安全产生极大威胁。由于部分地区实测流量资料缺少,基于雨量资料的随机模型与水文模型耦合模拟洪水过程线的研究亟待发展。针对现有小流域流量资料缺少问题,研究了基于降雨随机模型与水文模型的Copula-LM-HMS耦联模型,来模拟入库洪水并计算水库大坝洪水漫顶风险率。该模型通过Copula函数与拉丁超立方-蒙特卡罗抽样(Latin Hypercube-Monte Carlo Simulation)生成流域多组7日降雨数据,并通过变倍比放大法缩放处理得到相应降雨序列,利用HEC-HMS水文模型模拟洪水过程线并结合调洪演算得到坝前最高水位,同时考虑风浪作用来模拟台风情景下的库水位变化情况,计算大坝洪水漫顶风险率,并分析不同组合条件对洪水漫顶风险率的影响。余姚市四明湖水库实例分析表明,构建的Copula-LM-HMS耦合模型计算得到的拦河坝在未来台风情境下无漫顶风险,自溃坝最小漫顶风险为0.22%,最大漫顶风险达到2.68%;洪水漫顶风险与降雨分布及起调水位有关,同时风浪作用对洪水漫顶风险影响较大。基于耦合模型进行中小流域洪水漫顶风险率计算,不仅能考虑降雨系列之间的相关性、流域地形特征与实际调洪规则,还可延长无流量资料地区水库大坝应对台风情境下洪水风险的预报期,为保证水库大坝应对未来气候变化影响下的运行安全提供参考。