An innovative stormwater master plan based on low impact development LID is proposed.Unlike the traditional urban drainage plan this plan employs a sustainable stormwater management approach in communities utilizing L...An innovative stormwater master plan based on low impact development LID is proposed.Unlike the traditional urban drainage plan this plan employs a sustainable stormwater management approach in communities utilizing LID practices to reduce runoff and pollution load. An integrated hydraulic model which combines the traditional drainage sewer system with LID practices is adopted to assess the master plan.Through a long-term continuous simulation for 20 years the results reveal that the runoff volume will be reduced by over 80% following full implementation of this plan. Combining with the local conditions technical guidelines are established to provide assistance in implementing the stormwater master plan. Bioretention facilities for three main roads are constructed and other areas of development are being implemented sequentially under the guidance of the plan. This project provides an alternative method of stormwater management through the implementation of LID and it acts as a good example for other developing districts in China.展开更多
Rapid urbanization has brought various water-concerning problems to cities, such as water source scarcity, water pollution, fl ood disaster, and habitat loss of aquatic life, Low Impact Development(LID) is a signifi c...Rapid urbanization has brought various water-concerning problems to cities, such as water source scarcity, water pollution, fl ood disaster, and habitat loss of aquatic life, Low Impact Development(LID) is a signifi cant approach of solving these problems. Through sorting out causes and connotations of LID and urban spongy park, this proposed that fl exible design is the core content of spongy park construction, and on this basis analyzed objectives, contents and approaches of urban spongy park construction, put forward strategies suitable for the construction of urban spongy parks in China, in order to instruct future construction of domestic urban spongy parks and promote the development of ecological civilization.展开更多
Many Low Impact Developments (LIDs) have recently been developed as a sustainable integrated strategy for managing the quantity and quality of stormwater and surrounding amenities. Previous research showed that green ...Many Low Impact Developments (LIDs) have recently been developed as a sustainable integrated strategy for managing the quantity and quality of stormwater and surrounding amenities. Previous research showed that green roof is one of the most promising LIDs for slowing down rainwater, controlling rainwater volume, and enhancing rainwater quality by filtering and leaching contaminants from the substrate. However, there is no guideline for green roof design in Malaysia. Hence, Investigating the viability of using green roofs to manage stormwater and address flash flood hazards is urgently necessary. This study used the Storm Water Management Model (SWMM) to evaluate the effectiveness of green roof in managing stormwater and improving rainwater quality. The selected study area is the multistory car park (MSCP) rooftop at Swinburne University of Technology Sarawak Campus. Nine green roof models with different configurations were created. Results revealed that the optimum design of a green roof is 100 mm of berm height, 150 mm of soil thickness, and 50 mm of drainage mat thickness. With the ability to reduce runoff generation by 26.73%, reduce TSS by 89.75%, TP by 93.07%, TN by 93.16%, and improved BOD by 81.33%. However, pH values dropped as low as 5.933 and became more acidic due to the substrates in green roof. These findings demonstrated that green roofs improve water quality, able to temporarily store excess rainfall and it is very promising and sustainable tool in managing stormwater.展开更多
In order to improve the stormwater regulation functions of urban greenways on the basis of literature research and case study the relationships between urban greenway and low impact development LID and green stormwate...In order to improve the stormwater regulation functions of urban greenways on the basis of literature research and case study the relationships between urban greenway and low impact development LID and green stormwater infrastructure GSI are analyzed. Then the classification system of urban greenways is proposed based on their stormwater regulation function and the suitable technical measures for stormwater management which can be used in different kinds of greenways are selected. According to China’s urban planning system the greenway planning method combined with the urban drainage system is developed and the design methods of the greenway stormwater system and individual stormwater facilities are put forward. The relationships between the greenway stormwater system and other systems are also analyzed in terms of stormwater inlet vertical design and overflow.Finally the waterfront greenway and street greenway demonstration projects in Jiaxing City which adopts the above concept and method are introduced. The results show that the reduction rates of annual total stormwater runoff and average total runoff contaminants TSS of the stormwater system are not less than 30% and 40% respectively.展开更多
The strengths weaknesses opportunities and threats SWOT analysis method is applied to assess the feasibility of traditional stormwater management and low impact development LID in China.The results show that tradition...The strengths weaknesses opportunities and threats SWOT analysis method is applied to assess the feasibility of traditional stormwater management and low impact development LID in China.The results show that traditional stormwater management has many disadvantages e.g.only stormwater collection and discharge or flooding peak-flow regulation is taken into consideration but lack of many important functions such as on-site infiltration non-point pollution control ecological treatment etc.Meanwhile as a new stormwater management concept the LID system has many advantages e.g.LID can not only control rainwater quantity but also effectively prevent non-point pollution. Moreover LID is easy for implementation and cost effective and operation and management can also be done easily.LID has attracted more and more attention from governmental authorities at different levels and the majority of practitioners. Therefore LID has bright prospects for wide applications in China.展开更多
Many cities are adopting low impact development(LID)technologies(a type of nature-based solution)to sustainably manage urban stormwater in future climates.LIDs,such as bioretention cells,green roofs,and permeable pave...Many cities are adopting low impact development(LID)technologies(a type of nature-based solution)to sustainably manage urban stormwater in future climates.LIDs,such as bioretention cells,green roofs,and permeable pavements,are developed and applied at small-scales in urban and peri-urban settings.There is an interest in the large-scale implementation of these technologies,and therefore assessing their performance in future climates,or conversely,their potential for mitigating the impacts of climate change,can be valuable evidence in support of stormwater management planning.This paper provides a literature review of the studies conducted that examine LID function in future climates.The review found that most studies focus on LID performance at over 5 km2scales,which is quite a bit larger than traditional LID sizes.Most paper used statistical downscaling methods to simulate precipitation at the scale of the modelled LID.The computer model used to model LIDs was predominantly SWMM or some hybrid version of SWMM.The literature contains examples of both vegetated and unvegetated LIDs being assessed and numerous studies show mitigation of peak flows and total volumes to high levels in even the most extreme climates(characterized by increasing rainfall intensity,higher temperatures,and greater number of dry days in the inter-event period).However,all the studies recognized the uncertainty in the projections with greatest uncertainty in the LID’s ability to mitigate storm water quality.Interestingly,many of the studies did not recognize the impact of applying a model intended for small-scale processes at a much larger scale for which it is not intended.To explore the ramifications of scale when modelling LIDs in future climates,this paper provides a simple case study of a large catchment on Vancouver Island in British Columbia,Canada,using the Shannon Diversity Index.PCSWMM is used in conjunction with providing regional climates for impacts studies(PRECIS)regional climate model data to determine the relationship between catchment hydrology(with and without LIDs)and the information loss due to PCSWMM’s representation of spatial heterogeneity.The model is applied to five nested catchments ranging from 3 to 51 km2and with an RCP4.5 future climate to generate peak flows and total volumes in 2022,and for the period of 2020–2029.The case study demonstrates that the science behind the LID model within PC stormwater management model(PCSWMM)is too simple to capture appropriate levels of heterogeneity needed at larger-scale implementations.The model actually manufactures artificial levels of diversity due to its landuse representation,which is constant for every scale.The modelling exercise demonstrated that a simple linear expression for projected precipitation vs.catchment area would provide comparable estimates to PCSWMM.The study found that due to the spatial representation in PCSWMM for landuse,soil data and slope,slope(an important factor in determining peak flowrates)had the highest level of information loss followed by soil type and then landuse.As the research scale increased,the normalized information loss index(NILI)value for landuse exhibited the greatest information loss as the catchments scaled up.The NILI values before and after LID implementation in the model showed an inverse trend with the predicted LID mitigating performance.展开更多
Multi-objective optimization linked with an urban stormwater model is used in this study to identify cost-effective low impact development (LID) implementation designs for small urbanizing watersheds. The epsilon-Non-...Multi-objective optimization linked with an urban stormwater model is used in this study to identify cost-effective low impact development (LID) implementation designs for small urbanizing watersheds. The epsilon-Non-Dominated Sorting Genetic Algorithm II (ε-NSGAII) has been coupled with the US Environmental Protection Agency’s Stormwater Management Model (SWMM) to balance the costs and the hydrologic benefits of candidate LID solutions. Our objective in this study is to identify the near-optimal tradeoff between the total LID costs and the total watershed runoff volume constrained by pre-development peak flow rates. This study contributes a detailed analysis of the costs and benefits associated with the use of green roofs, porous pavement, and bioretention basins within a small urbanizing watershed inState College,Pennsylvania. Beyond multi-objective analysis, this paper also contributes improved SWMM representations of LID alternatives and demonstrates their usefulness for screening alternative site layouts for LID technologies.展开更多
Water quality,flooding risk,and water consumption in urban areas are emerging issues.Urban impervious surfaces increase stormwater runoff,affecting ecosystems and leading to hydrogeological instability and flooding ri...Water quality,flooding risk,and water consumption in urban areas are emerging issues.Urban impervious surfaces increase stormwater runoff,affecting ecosystems and leading to hydrogeological instability and flooding risk.Sustainable urban design strategies can contribute to counteract the negative impact of anthropic activities both at city-scale and global scale.Green and Blue Infrastructure(GBI)approaches,in particular,are an alternative to stormwater traditional management.In Europe,Sustainable Drainage System implementation copes with impervious surfaces to achieve water quality,amenity,and biodiversity increase.Best Management Practices,developed mainly in the USA,focus on specific measures for sustainable stormwater treatment.Water Sensitive Urban Design,spread in Australia and England,also aims to minimise the impact of developed areas preventing flood risk,limiting water consumption and enhancing environmental quality.In the USA and Canada,Low Impact Development offers design strategies to manage runoff and deliver structural practices to mimic predevelopment processes of infiltration,filtration and detention.展开更多
Continuous urbanization over the last few years has led to the increase in impervious surfaces and stormwater runoff.Low Impact Development(LID)is currently receiving increased attention as a promising strategy for su...Continuous urbanization over the last few years has led to the increase in impervious surfaces and stormwater runoff.Low Impact Development(LID)is currently receiving increased attention as a promising strategy for surface runoff management.To analyze the performance of LID practices for surface runoff management,a longterm hydrological modeling from 2001 to 2015 along with a cost-effectiveness analysis were carried out on a campus in Dresden,Germany.Seven LID practices and six precipitation scenarios were designed and simulated in a Storm Water Management Model(SWMM).A cost-effectiveness analysis was conducted by calculating the lifecycle costs and runoff removal rate of LID practices.Results demonstrated that the LID practices significantly contributed to surface runoff mitigation in the study area.The LID performance was primarily affected by the length of the precipitation scenarios and LID implementing schemes.The runoff removal rate of the LID practices fluctuated significantly when the rainfall scenario was shorter than 12 months.When the rainfall scenario exceeded 1 year the effects on the runoff removal rate was constant.The combination of an infiltration trench,permeable pavement,and rain barrel(IT+PP+RB),was the best runoff control capacity with a removal rate ranging from 23.2% to 27.4%.Whereas,the rain barrel was the most cost-effective LID option with a costeffectiveness(C/E)ratio ranged from 0.34 to 0.41.The modeling method was improved in this study by conducting long-term hydrological simulations with different durations rather than short-term simulations with single storms.In general,the methods and results of this study provided additional improvements and guidance for decision-making process regarding the implementation of appropriate LID practices.展开更多
Prince George’s County,Maryland,in the Washington D.C.metropolitan area has developed a best management practice decision support system(BMPDSS)to support analysis and decision making for stormwater management planni...Prince George’s County,Maryland,in the Washington D.C.metropolitan area has developed a best management practice decision support system(BMPDSS)to support analysis and decision making for stormwater management planning and design at both the site scale and the watershed levels.This paper presents a detailed description of the BMPDSS.A case study that demonstrates the application of the system is also included.The case study involves a Green Highway project located in a highly urbanized area within the Anacostia River watershed of the county.Several best management practices(BMP)such as bioretention,filter vegetative swale,porous paving,and landscape infiltration are proposed for reducing highway runoff and improving water quality.The BMPDSS is used to identify and evaluate various alternatives to determine the most costeffective types and combinations of BMPs that minimize the highway runoff pollution.展开更多
Bioretention is a popular best management practice of low impact development that el/ecUvely restores urban hydrologic characteristics to those ofpredevelopment and improves water quality prior to conveyance to surfac...Bioretention is a popular best management practice of low impact development that el/ecUvely restores urban hydrologic characteristics to those ofpredevelopment and improves water quality prior to conveyance to surface waters. This is achieved by utilizing an engineered system containing a surface layer of mulch, a thick soil media often amended with a variety of materials to improve water oualitv, a variety of vegetation, and underdrains, depending on the surrounding soil characteristics.Bioretention systems have been studied quite extensively for warm climate applications, but ctata strongly supporting their long-tema efficacy and application in cold climates is sparse. Although it is apparent that biorelention is an effective stormwater management system, its design in cold climate needs further research. Existing cold climate research has shown that coarser media is required to prevent concrete frost from forming. For spring, summer and fall seasons, if sufficient permeability exists to drain the system prior to freezing, peak flow and volume reduction can be maintained. Additionally. contaminants that are removed via filtration are also not impacted by cold climates. In contrary, dissolved contaminants, nutrients, and organics are significantly more variable in their ability to be removed or degraded via bioretention in colder temperatures. Winter road maintenance salts have been shown to negatively impact the removal of some contaminants and positively impact others, while their effects on properly selected vegetation or bacteria health are also not well understood. Research in these water quality aspects has been inconsistent and therefore requires further study.展开更多
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2010BAK69B16)
文摘An innovative stormwater master plan based on low impact development LID is proposed.Unlike the traditional urban drainage plan this plan employs a sustainable stormwater management approach in communities utilizing LID practices to reduce runoff and pollution load. An integrated hydraulic model which combines the traditional drainage sewer system with LID practices is adopted to assess the master plan.Through a long-term continuous simulation for 20 years the results reveal that the runoff volume will be reduced by over 80% following full implementation of this plan. Combining with the local conditions technical guidelines are established to provide assistance in implementing the stormwater master plan. Bioretention facilities for three main roads are constructed and other areas of development are being implemented sequentially under the guidance of the plan. This project provides an alternative method of stormwater management through the implementation of LID and it acts as a good example for other developing districts in China.
基金Sponsored by Jiangxi Provincial Arts and Social Science Program(YG2015036,YG2016033)
文摘Rapid urbanization has brought various water-concerning problems to cities, such as water source scarcity, water pollution, fl ood disaster, and habitat loss of aquatic life, Low Impact Development(LID) is a signifi cant approach of solving these problems. Through sorting out causes and connotations of LID and urban spongy park, this proposed that fl exible design is the core content of spongy park construction, and on this basis analyzed objectives, contents and approaches of urban spongy park construction, put forward strategies suitable for the construction of urban spongy parks in China, in order to instruct future construction of domestic urban spongy parks and promote the development of ecological civilization.
文摘Many Low Impact Developments (LIDs) have recently been developed as a sustainable integrated strategy for managing the quantity and quality of stormwater and surrounding amenities. Previous research showed that green roof is one of the most promising LIDs for slowing down rainwater, controlling rainwater volume, and enhancing rainwater quality by filtering and leaching contaminants from the substrate. However, there is no guideline for green roof design in Malaysia. Hence, Investigating the viability of using green roofs to manage stormwater and address flash flood hazards is urgently necessary. This study used the Storm Water Management Model (SWMM) to evaluate the effectiveness of green roof in managing stormwater and improving rainwater quality. The selected study area is the multistory car park (MSCP) rooftop at Swinburne University of Technology Sarawak Campus. Nine green roof models with different configurations were created. Results revealed that the optimum design of a green roof is 100 mm of berm height, 150 mm of soil thickness, and 50 mm of drainage mat thickness. With the ability to reduce runoff generation by 26.73%, reduce TSS by 89.75%, TP by 93.07%, TN by 93.16%, and improved BOD by 81.33%. However, pH values dropped as low as 5.933 and became more acidic due to the substrates in green roof. These findings demonstrated that green roofs improve water quality, able to temporarily store excess rainfall and it is very promising and sustainable tool in managing stormwater.
基金The National Natural Science Foundation of China(No.51208020)
文摘In order to improve the stormwater regulation functions of urban greenways on the basis of literature research and case study the relationships between urban greenway and low impact development LID and green stormwater infrastructure GSI are analyzed. Then the classification system of urban greenways is proposed based on their stormwater regulation function and the suitable technical measures for stormwater management which can be used in different kinds of greenways are selected. According to China’s urban planning system the greenway planning method combined with the urban drainage system is developed and the design methods of the greenway stormwater system and individual stormwater facilities are put forward. The relationships between the greenway stormwater system and other systems are also analyzed in terms of stormwater inlet vertical design and overflow.Finally the waterfront greenway and street greenway demonstration projects in Jiaxing City which adopts the above concept and method are introduced. The results show that the reduction rates of annual total stormwater runoff and average total runoff contaminants TSS of the stormwater system are not less than 30% and 40% respectively.
基金The National Science and Technology Major Project of China(No.2010ZX07320-003)
文摘The strengths weaknesses opportunities and threats SWOT analysis method is applied to assess the feasibility of traditional stormwater management and low impact development LID in China.The results show that traditional stormwater management has many disadvantages e.g.only stormwater collection and discharge or flooding peak-flow regulation is taken into consideration but lack of many important functions such as on-site infiltration non-point pollution control ecological treatment etc.Meanwhile as a new stormwater management concept the LID system has many advantages e.g.LID can not only control rainwater quantity but also effectively prevent non-point pollution. Moreover LID is easy for implementation and cost effective and operation and management can also be done easily.LID has attracted more and more attention from governmental authorities at different levels and the majority of practitioners. Therefore LID has bright prospects for wide applications in China.
基金supported by the National Science and Engineering Research Council of Canada(RGPIN-2022-04352)
文摘Many cities are adopting low impact development(LID)technologies(a type of nature-based solution)to sustainably manage urban stormwater in future climates.LIDs,such as bioretention cells,green roofs,and permeable pavements,are developed and applied at small-scales in urban and peri-urban settings.There is an interest in the large-scale implementation of these technologies,and therefore assessing their performance in future climates,or conversely,their potential for mitigating the impacts of climate change,can be valuable evidence in support of stormwater management planning.This paper provides a literature review of the studies conducted that examine LID function in future climates.The review found that most studies focus on LID performance at over 5 km2scales,which is quite a bit larger than traditional LID sizes.Most paper used statistical downscaling methods to simulate precipitation at the scale of the modelled LID.The computer model used to model LIDs was predominantly SWMM or some hybrid version of SWMM.The literature contains examples of both vegetated and unvegetated LIDs being assessed and numerous studies show mitigation of peak flows and total volumes to high levels in even the most extreme climates(characterized by increasing rainfall intensity,higher temperatures,and greater number of dry days in the inter-event period).However,all the studies recognized the uncertainty in the projections with greatest uncertainty in the LID’s ability to mitigate storm water quality.Interestingly,many of the studies did not recognize the impact of applying a model intended for small-scale processes at a much larger scale for which it is not intended.To explore the ramifications of scale when modelling LIDs in future climates,this paper provides a simple case study of a large catchment on Vancouver Island in British Columbia,Canada,using the Shannon Diversity Index.PCSWMM is used in conjunction with providing regional climates for impacts studies(PRECIS)regional climate model data to determine the relationship between catchment hydrology(with and without LIDs)and the information loss due to PCSWMM’s representation of spatial heterogeneity.The model is applied to five nested catchments ranging from 3 to 51 km2and with an RCP4.5 future climate to generate peak flows and total volumes in 2022,and for the period of 2020–2029.The case study demonstrates that the science behind the LID model within PC stormwater management model(PCSWMM)is too simple to capture appropriate levels of heterogeneity needed at larger-scale implementations.The model actually manufactures artificial levels of diversity due to its landuse representation,which is constant for every scale.The modelling exercise demonstrated that a simple linear expression for projected precipitation vs.catchment area would provide comparable estimates to PCSWMM.The study found that due to the spatial representation in PCSWMM for landuse,soil data and slope,slope(an important factor in determining peak flowrates)had the highest level of information loss followed by soil type and then landuse.As the research scale increased,the normalized information loss index(NILI)value for landuse exhibited the greatest information loss as the catchments scaled up.The NILI values before and after LID implementation in the model showed an inverse trend with the predicted LID mitigating performance.
文摘Multi-objective optimization linked with an urban stormwater model is used in this study to identify cost-effective low impact development (LID) implementation designs for small urbanizing watersheds. The epsilon-Non-Dominated Sorting Genetic Algorithm II (ε-NSGAII) has been coupled with the US Environmental Protection Agency’s Stormwater Management Model (SWMM) to balance the costs and the hydrologic benefits of candidate LID solutions. Our objective in this study is to identify the near-optimal tradeoff between the total LID costs and the total watershed runoff volume constrained by pre-development peak flow rates. This study contributes a detailed analysis of the costs and benefits associated with the use of green roofs, porous pavement, and bioretention basins within a small urbanizing watershed inState College,Pennsylvania. Beyond multi-objective analysis, this paper also contributes improved SWMM representations of LID alternatives and demonstrates their usefulness for screening alternative site layouts for LID technologies.
文摘Water quality,flooding risk,and water consumption in urban areas are emerging issues.Urban impervious surfaces increase stormwater runoff,affecting ecosystems and leading to hydrogeological instability and flooding risk.Sustainable urban design strategies can contribute to counteract the negative impact of anthropic activities both at city-scale and global scale.Green and Blue Infrastructure(GBI)approaches,in particular,are an alternative to stormwater traditional management.In Europe,Sustainable Drainage System implementation copes with impervious surfaces to achieve water quality,amenity,and biodiversity increase.Best Management Practices,developed mainly in the USA,focus on specific measures for sustainable stormwater treatment.Water Sensitive Urban Design,spread in Australia and England,also aims to minimise the impact of developed areas preventing flood risk,limiting water consumption and enhancing environmental quality.In the USA and Canada,Low Impact Development offers design strategies to manage runoff and deliver structural practices to mimic predevelopment processes of infiltration,filtration and detention.
基金jointly supported by the COLABIS project(Collaborative Early Warning Information Systems for Urban Infrastructures,Grant No.:03G0852A)Managing Water Resources for Urban Catchments project in the framework of the Sino-German“Innovation Cluster Major Water”(Grant No.:02WCL1337A-K)funded by German Federal Ministry of Education and Research(BMBF).
文摘Continuous urbanization over the last few years has led to the increase in impervious surfaces and stormwater runoff.Low Impact Development(LID)is currently receiving increased attention as a promising strategy for surface runoff management.To analyze the performance of LID practices for surface runoff management,a longterm hydrological modeling from 2001 to 2015 along with a cost-effectiveness analysis were carried out on a campus in Dresden,Germany.Seven LID practices and six precipitation scenarios were designed and simulated in a Storm Water Management Model(SWMM).A cost-effectiveness analysis was conducted by calculating the lifecycle costs and runoff removal rate of LID practices.Results demonstrated that the LID practices significantly contributed to surface runoff mitigation in the study area.The LID performance was primarily affected by the length of the precipitation scenarios and LID implementing schemes.The runoff removal rate of the LID practices fluctuated significantly when the rainfall scenario was shorter than 12 months.When the rainfall scenario exceeded 1 year the effects on the runoff removal rate was constant.The combination of an infiltration trench,permeable pavement,and rain barrel(IT+PP+RB),was the best runoff control capacity with a removal rate ranging from 23.2% to 27.4%.Whereas,the rain barrel was the most cost-effective LID option with a costeffectiveness(C/E)ratio ranged from 0.34 to 0.41.The modeling method was improved in this study by conducting long-term hydrological simulations with different durations rather than short-term simulations with single storms.In general,the methods and results of this study provided additional improvements and guidance for decision-making process regarding the implementation of appropriate LID practices.
文摘Prince George’s County,Maryland,in the Washington D.C.metropolitan area has developed a best management practice decision support system(BMPDSS)to support analysis and decision making for stormwater management planning and design at both the site scale and the watershed levels.This paper presents a detailed description of the BMPDSS.A case study that demonstrates the application of the system is also included.The case study involves a Green Highway project located in a highly urbanized area within the Anacostia River watershed of the county.Several best management practices(BMP)such as bioretention,filter vegetative swale,porous paving,and landscape infiltration are proposed for reducing highway runoff and improving water quality.The BMPDSS is used to identify and evaluate various alternatives to determine the most costeffective types and combinations of BMPs that minimize the highway runoff pollution.
文摘Bioretention is a popular best management practice of low impact development that el/ecUvely restores urban hydrologic characteristics to those ofpredevelopment and improves water quality prior to conveyance to surface waters. This is achieved by utilizing an engineered system containing a surface layer of mulch, a thick soil media often amended with a variety of materials to improve water oualitv, a variety of vegetation, and underdrains, depending on the surrounding soil characteristics.Bioretention systems have been studied quite extensively for warm climate applications, but ctata strongly supporting their long-tema efficacy and application in cold climates is sparse. Although it is apparent that biorelention is an effective stormwater management system, its design in cold climate needs further research. Existing cold climate research has shown that coarser media is required to prevent concrete frost from forming. For spring, summer and fall seasons, if sufficient permeability exists to drain the system prior to freezing, peak flow and volume reduction can be maintained. Additionally. contaminants that are removed via filtration are also not impacted by cold climates. In contrary, dissolved contaminants, nutrients, and organics are significantly more variable in their ability to be removed or degraded via bioretention in colder temperatures. Winter road maintenance salts have been shown to negatively impact the removal of some contaminants and positively impact others, while their effects on properly selected vegetation or bacteria health are also not well understood. Research in these water quality aspects has been inconsistent and therefore requires further study.