A passive rainwater harvesting technique was used to design a sustainable landscape for a residential lot located in the desert. The design was adapted to the Desert Southwest region of the United States based on thir...A passive rainwater harvesting technique was used to design a sustainable landscape for a residential lot located in the desert. The design was adapted to the Desert Southwest region of the United States based on thirty years of daily historical climate data including precipitation and reference evapotranspiration (ET0). Four cities including El Paso, TX, Albuquerque, NM, Phoenix, AZ, and Pahrump, NV, were selected to represent the area. The residential lot was broken up into micro-watersheds reflecting the runoff of water from each separate portion of the house roof, driveway, and lawn area. The paper explains in detail the design steps for one of the micro-watersheds where water retention and infiltration structures were distributed throughout the soil area to capture stormwater runoff close to its source. A passive rainwater capture landscape was obtained by using the stormwater captured in the infiltration structures and stored in the surrounding soil. Native vegetation (shrubs and trees) will use this water exclusively for growth. These plants will not require watering once their root establishment period has passed, except in extreme droughts. Meanwhile, stormwater discharge from the lot will decrease and the groundwater recharge will increase. Results indicate that the current urban water budget can be made sustainable by replacing watering of landscape by municipal water with harvested stormwater. This results in a relatively lush and shady environment even in desert climates. The success is an artifact of the tendency of urban watersheds to increase the volume of stormwater relative to pre-development conditions.展开更多
Australia has developed extensive policies and guidelines for the management of its water. The City of Salisbury, located within metropolitan Adelaide, South Australia, developed rapidly through urbanisation from the ...Australia has developed extensive policies and guidelines for the management of its water. The City of Salisbury, located within metropolitan Adelaide, South Australia, developed rapidly through urbanisation from the 1970s. Water sensitive urban design principles were adopted to maximise the use of the increased rim-off generated by urbanisation and ameliorate flood risk. Managed aquifer recharge was introduced for storing remediated low-salinity stormwater by aquifer storage and recovery (ASR) in a brackish aquiter for subsequent lrngatlon. Ibis paper outlines now a municipal government has progressively adopted principles of Water Sensitive Urban Design during its development within a framework of evolving national water policies. Salisbury's success with stormwater harvesting led to the formation of a pioneering w aterbusiness that includes linking projects from nine sites to provide a non-potable supply of 5 ×10^6 m^3 year. These installations hosted a number of applied research projects addressing well configuration, water quality, reliability and economics and facilitated the evaluation of its system as a potential potable water source. The evaluation showed that while untreated stonnwater contained contaminants, subsurface storage and end-use controls were sufficient to make recovered water sale for public open space irrigation, and with chlorination acceptable lbr third pipe supplies. Drinking water quality could be achieved by adding microfiltration, disinfection with UV and chlorination. The costs that would need to be expended to achieve drinking water safety standards were found to be considerably less than the cost of establishing dual pipe distribution systems. The full cost of supply was determined to be AUD$1.57 m " for non-potable water for pubhc open space lrngatlon much cheaper than mares water, AUD $3.45 m at that time. Producing and storing potable water was found to cost AUDS1.96 to $2.24 m .展开更多
文摘A passive rainwater harvesting technique was used to design a sustainable landscape for a residential lot located in the desert. The design was adapted to the Desert Southwest region of the United States based on thirty years of daily historical climate data including precipitation and reference evapotranspiration (ET0). Four cities including El Paso, TX, Albuquerque, NM, Phoenix, AZ, and Pahrump, NV, were selected to represent the area. The residential lot was broken up into micro-watersheds reflecting the runoff of water from each separate portion of the house roof, driveway, and lawn area. The paper explains in detail the design steps for one of the micro-watersheds where water retention and infiltration structures were distributed throughout the soil area to capture stormwater runoff close to its source. A passive rainwater capture landscape was obtained by using the stormwater captured in the infiltration structures and stored in the surrounding soil. Native vegetation (shrubs and trees) will use this water exclusively for growth. These plants will not require watering once their root establishment period has passed, except in extreme droughts. Meanwhile, stormwater discharge from the lot will decrease and the groundwater recharge will increase. Results indicate that the current urban water budget can be made sustainable by replacing watering of landscape by municipal water with harvested stormwater. This results in a relatively lush and shady environment even in desert climates. The success is an artifact of the tendency of urban watersheds to increase the volume of stormwater relative to pre-development conditions.
文摘Australia has developed extensive policies and guidelines for the management of its water. The City of Salisbury, located within metropolitan Adelaide, South Australia, developed rapidly through urbanisation from the 1970s. Water sensitive urban design principles were adopted to maximise the use of the increased rim-off generated by urbanisation and ameliorate flood risk. Managed aquifer recharge was introduced for storing remediated low-salinity stormwater by aquifer storage and recovery (ASR) in a brackish aquiter for subsequent lrngatlon. Ibis paper outlines now a municipal government has progressively adopted principles of Water Sensitive Urban Design during its development within a framework of evolving national water policies. Salisbury's success with stormwater harvesting led to the formation of a pioneering w aterbusiness that includes linking projects from nine sites to provide a non-potable supply of 5 ×10^6 m^3 year. These installations hosted a number of applied research projects addressing well configuration, water quality, reliability and economics and facilitated the evaluation of its system as a potential potable water source. The evaluation showed that while untreated stonnwater contained contaminants, subsurface storage and end-use controls were sufficient to make recovered water sale for public open space irrigation, and with chlorination acceptable lbr third pipe supplies. Drinking water quality could be achieved by adding microfiltration, disinfection with UV and chlorination. The costs that would need to be expended to achieve drinking water safety standards were found to be considerably less than the cost of establishing dual pipe distribution systems. The full cost of supply was determined to be AUD$1.57 m " for non-potable water for pubhc open space lrngatlon much cheaper than mares water, AUD $3.45 m at that time. Producing and storing potable water was found to cost AUDS1.96 to $2.24 m .