Streptococcus thermophilus is one of the most prevalent species in stool samples of westernized populations due to continuous exposure to fermented dairy products.However,few studies have explored the effect on host p...Streptococcus thermophilus is one of the most prevalent species in stool samples of westernized populations due to continuous exposure to fermented dairy products.However,few studies have explored the effect on host physiology by multiple S.thermophilus strains and considered the inter-strain differences in regulating host.In the present study,we investigated how four S.thermophilus strains influenced the gut microbiota,mucin changes,and host metabolism after 28 days of intervention in conventional mice.The results indicated that the consumption of S.thermophilus affected the host with strain specificity.Among four S.thermophilus strains,DYNDL13-4 and DQHXNQ38M61,especially DQHXNQ38M61,had more effect on host physiology by modulating gut microbiota and host metabolism than LMD9 and 4M6.Ingestion of strains DYNDL13-4 and DQHXNQ38M61 resulted in more remarkable changes in amino acid metabolism and lipid metabolism than that of strains LMD9 and 4M6,which may be related to the elevation of intestinal Bifidobacterium by DYNDL13-4 and DQHXNQ38M61.The enriched Coriobacteriaceae UCG-002,Rikenellaceae RC9 gut group,and Lactobacillus only in the DQHXNQ38M61 group,had a close relationship with the prominent effect of DQHXNQ38M61 on regulating amino acid and lipid metabolism.In addition,DQHXNQ38M61 had a strong influence on degrading colonic mucin fucose by decreasedα-fucosidase activity in feces,and improving mucin sulfation by upregulated Gal3ST2 expression.Comparative genomic analysis revealed that the four S.thermophilus strains belonged to different branches in the phylogenetic tree,and DYNDL13-4 and DQHXNQ38M61 had more genes involved in carbohydrate metabolism,amino acid metabolism,membrane transport,and signal transduction,which may confer the capacity of nutrient utilization and gastrointestinal adaptation of the strains and be associated with their strong regulation in host.Our study provides valuable information for understanding the regulation of host metabolism after consuming different S.thermophilus strains and could facilitate potential personalized applications of S.thermophilus based on strain varieties.展开更多
AIM: To investigate the potential therapeutic effect of exopolysaccharide (EPS)-producing Streptococcus thermophilus (S. thermophilus) CRL 1190 fermented milk on chronic gastritis in Balb/c mice. METHODS: Balb/c mice ...AIM: To investigate the potential therapeutic effect of exopolysaccharide (EPS)-producing Streptococcus thermophilus (S. thermophilus) CRL 1190 fermented milk on chronic gastritis in Balb/c mice. METHODS: Balb/c mice were fed with the fermented milk for 7 d after inducing gastritis with acetyl-salicylic acid (ASA, 400 mg/kg body weight per day for 10 d). Omeprazole was included in this study as a positive therapeutic control. The gastric in? ammatory activity was evaluated from gastric histology and in? ammation score, number of interleukin-10 (IL-10), interferon-γ (INFγ) and tumor necrosis factor-α (TNF-α) cytokine-producing cells in the gastric mucosa, and thickness of the mucus layer. RESULTS: Animals receiving treatment with the EPS-producing S. thermophilus CRL 1190 fermented milk showed a conserved gastric mucosa structure similar to that of healthy animals. In? ammation scores of the fermented milk-treated mice were lower than those of mice in the gastritis group (0.2 ± 0.03 vs 2.0 ± 0.6, P < 0.05). A marked decrease in INFγ+ (15 ± 1.0 vs 28 ± 1.2, P < 0.05) and TNF-α+ (16 ± 3.0 vs 33 ± 3.0, P < 0.05) cells and an increase in IL-10+ (28 ± 1.5 vs 14 ± 1.3, P < 0.05) cells compared to the gastritis group, was observed. Also, an increase in the thickness of the mucus gel layer (2.2 ± 0.6 vs 1.0 ± 0.3; 5.1 ± 0.8 vs 1.5 ± 0.4 in the corpus and antrum mucosa, respectively, P < 0.05) compared with the gastritis group was noted. A milk suspension of the purif ied EPS from S. thermophilus CRL1190 was also effective as therapy for gastritis.展开更多
Probiotic bacteria in plain yogurt namely of Lactobacillus ssp. have been reported to treat thrush, diarrhea, athlete’s foot, jock itch and vaginal yeast infections. Lactobacillus delbrueckii ssp. bulgarius (LB-12) a...Probiotic bacteria in plain yogurt namely of Lactobacillus ssp. have been reported to treat thrush, diarrhea, athlete’s foot, jock itch and vaginal yeast infections. Lactobacillus delbrueckii ssp. bulgarius (LB-12) and Streptococcus thermophilus (ST-M5) are lactic acid bacteria widely used in the manufacture of yogurt. Alcohol is used in manufacture of some medications such as cough syrups and some products such as eggnog and rum-raisin ice cream. The objectives were to study the effect of food grade ethanol on the growth of yogurt culture bacteria and the physico-chemical characteristics of therapeutic yogurt. The treatments were 0% (control), 2.5%, 5%, and 7.5% v/v ethanol in plain yogurt. The ethanol was incorporated by stirring it into one day old plain yogurt. Product characteristics were studied weekly for a month of refrigerated (4?C) storage. Data were analyzed using Proc Mixed model of Statistical Analysis System. The ethanol amount × storage period interaction effect was significant for Lactobacillus bulgaricus counts while the ethanol amount × storage period effect was not significant for Streptococcus thermophilus counts, viscosity, pH and titratable acidity (TA). Therapeutic yogurts with ethanol, at these concentrations, can successfully be manufactured without adversely influencing counts of its probiotic bacteria over product shelf life.展开更多
目的评价Microreader^(TM)23HS Plex ID System试剂盒中包含的23个常染色体STR基因座在中国北方汉族人群中等位基因频率分布,获得群体遗传数据,探究其在法医学中的应用价值。方法使用Microreader^(TM)23HS Plex ID System试剂盒对中国...目的评价Microreader^(TM)23HS Plex ID System试剂盒中包含的23个常染色体STR基因座在中国北方汉族人群中等位基因频率分布,获得群体遗传数据,探究其在法医学中的应用价值。方法使用Microreader^(TM)23HS Plex ID System试剂盒对中国北方汉族人群548例无关样本DNA进行检测,收集分型数据,计算各基因座的等位基因频率、样本的杂合度(heterozygosity,H)、这些常染色体STR基因座的多态信息含量(polymorphism information content,PIC)、个体识别力(power of discrimination,DP)和非父排除率(probability of paternity exclusion,PE)并使用统计软件对各基因座是否符合Hardy-Weinberg平衡进行检验;同时对Microreader^(TM)23HS Plex ID System的累积个体识别能力(CDP)和累积非父排除率(CPE)进行计算。结果在548例无关样本中23个STR基因座共计检出260个等位基因,等位基因频率为0.0009~0.5902,H为0.611~0.885,PIC为0.577~0.864,DP为0.815~0.973(平均DP为0.922),PE为0.089~0.406,CDP=1-3.663×10^(-27),CPE=1-2.668×10^(-16),所有基因座等位基因的分布符合Hardy-Weinberg平衡。结论Microreader^(TM)23HS Plex ID System的23个基因座在中国北方汉族人群中具有良好的多态性,在法医学个人识别、群体遗传学研究、亲子鉴定,特别是复杂亲缘关系鉴定中应用价值较高。展开更多
Mild sonication intensity is an acoustic energy which involves the conversion of electrical signal into a physical vibration modifying the permeability of the cell plasma membrane. The objective of this study was to d...Mild sonication intensity is an acoustic energy which involves the conversion of electrical signal into a physical vibration modifying the permeability of the cell plasma membrane. The objective of this study was to determine the effect of mild sonication intensities at different temperatures on growth, bile tolerance and protease activity of Streptococcus thermophilus. The treatments were four mild sonication intensities (8.07, 14.68, 19.83 and 23.55 W/cm2) randomized at three different temperatures (4°C, 22°C and 40°C). The energy input (1500 J) was kept constant in all treatments. Control samples did not receive any sonication treatment. Growth and bile tolerance were determined every two hours for 12 h of incubation. Protease activity was determined at 0, 12 and 24 h. Mild sonication conditions included a) mild sonication intensities, b) temperatures and c) times, all three of which played a role in influencing the desirable attributes of Streptococcus salivarius ssp. thermophilus ST-M5. Of all the mild sonication intensities studied, 14.68 W/cm2 had the best overall influence at certain time points for improving bile tolerance and growth at 4°C, growth at 22°C and bile tolerance and growth at 40°C of Streptococcus salivarius ssp. thermophilus ST-M5. Mild sonication intensity of 23.55 W/cm2 had the overall best influence at certain time points for protease activity of Streptococcus salivarius ssp. thermophilus ST-M5 at 40°C. Streptococcus thermophilus ST-M5 pretreatment with some mild sonication conditions can be recommended for improvement of some of its characteristics.展开更多
There is a great deal of public interest in the use of herbal remedies. Garlic is said to antiviral and antifungal and along with ginger;they are antibacterial and preventatives for cardiovascular diseases. Ginger is ...There is a great deal of public interest in the use of herbal remedies. Garlic is said to antiviral and antifungal and along with ginger;they are antibacterial and preventatives for cardiovascular diseases. Ginger is very effective against nausea and has analgesic properties. Onion reduces the risk of developing diabetes and like garlic, has anticancer properties. Streptococcus thermophilus is a lactic acid bacterium that produces lactase, which facilitates the digestion of lactose in milk, decreases the symptoms of malabsorption, and reduces the risk of antibiotic associated diarrhea. Acid tolerance is an important probiotic characteristic and it is an indication of the ability of the microorganism to withstand the acidic pH of the stomach. Freshly thawed culture was inoculated in acidified MRS broth at pH 2 and 1% v/v of freshly ex-tracted spice juice was added. Control was without spice juice. Growth was determined hourly during 2 hours of incu-bation at 37?C. Bacterial culture treated with all three spices individually showed a significant increase in counts at 0 and 1 hours of incubation when compared to control. After 2 hours of incubation, culture exposed to ginger showed no significant difference compared to control, while there were slight yet significantly lower counts for culture exposed to garlic and onion individually. Among the spices, ginger had the best overall effect. These three spices can be used with Streptococcus thermophilus enabling health benefits from both sources.展开更多
The sterilization conditions between experiment and dairy industrial level are different and concern about influence on product’s qualities. In this study, the fermentation properties of Streptococcus thermophilus, a...The sterilization conditions between experiment and dairy industrial level are different and concern about influence on product’s qualities. In this study, the fermentation properties of Streptococcus thermophilus, alone and in combination with Lactobacillus delbrueckii subsp. bulgaricus, were evaluated in skim milk that had been subjected to distinct sterilization conditions. Growth, organic acid generation, and EPS production were determined using pasteurized or autoclaved milk. When S. thermophilus was cultivated in pasteurized skim milk, the growth was strain-dependent. On the other hand, growth of S. thermophilus was accelerated in autoclaved milk. Exocellular polysaccharide (EPS) production by L. bulgaricus was not affected by the combination of S. thermophilus strains. Thus, we observed that yogurt fermented by L. bulgaricus was minimally affected by the combination of S. thermophilus strains;growth of L. bulgaricus was maintained under the constant environment. These results should facilitate the development of fermented milk produced from L. bulgaricus in the dairy industry.展开更多
Consu<span>mption of flaxseed provides health benefits. Bile tolerance allows </span>survival of probiotics in the intestinal tract. The objective was to determine whether or not flaxseed enhances bile tol...Consu<span>mption of flaxseed provides health benefits. Bile tolerance allows </span>survival of probiotics in the intestinal tract. The objective was to determine whether or not flaxseed enhances bile tolerance of </span><span style="font-family:""><i></span><i><span style="font-family:"">Lactobacillus acidophilus</span></i><span style="font-family:""> (<i>L. acidophilus</i></span><i><span style="font-family:""></i></span></i><span style="font-family:"">) LA-K<i>, </i></span><i><span style="font-family:""><i></span></i><i><span style="font-family:"">Lactobacillus delbruekii</span></i><i><span style="font-family:""></i></span></i><span style="font-family:""> ssp.<i> </i></span><i><span style="font-family:""><i></span></i><i><span style="font-family:"">bulgaricus </span></i><span style="font-family:"">(</span><i><span style="font-family:"">L. bulgaricus</span></i><i><span style="font-family:""></i></span></i><span style="font-family:"">) LB-12,<span> </span></span><span style="font-family:"">and </span><span style="font-family:""><i></span><i><span style="font-family:"">Streptococcus salivarius</span></i><i><span style="font-family:""></i></span></i><i><span style="font-family:""> </span></i><span style="font-family:"">ssp.<i> </i></span><i><span style="font-family:""><i></span></i><i><span style="font-family:"">thermophilus </span></i><span style="font-family:"">(<i>S. </i></span><i><span style="font-family:"">thermophilus</span></i><i><span style="font-family:""></i></span></i><span style="font-family:"">) ST-M5</span><i><span style="font-family:"">. </span></i><span style="font-family:"">Control and experimental (62 g flaxseed/L) broths containing 0.3% oxgall were prepared for each culture, sterilized, cooled, inoculated, and plated for 8 h. <span>Growth of each microorganism in both the control and </span>experimental broths was evaluated by the slope of the regression line of its log count versus time after inoculation. Flaxseed significantly enhanced growth of </span><span style="font-family:""><i></span><i><span style="font-family:"">L.</span></i><i><span style="font-family:""> acidophilus</span></i><i><span style="font-family:""></i></span></i><span style="font-family:""> but not </span><span style="font-family:""><i></span><i><span style="font-family:"">L. </span></i><i><span style="font-family:"">bulgaricus</span></i><i><span style="font-family:""></i></span></i><span style="font-family:""> and </span><span style="font-family:""><i></span><i><span style="font-family:"">S. thermophilus</span></i><i><span style="font-family:""></i></span></i><span style="font-family:""> over 8 h compared to its corresponding control. Therefore, flaxseed improved the bile tolerance of </span><span style="font-family:""><i></span><i><span style="font-family:"">L. acidophilus</span></i><i><span style="font-family:""></i></span></i><i><span style="font-family:""> </span></i><span style="font-family:"">but not of </span><span style="font-family:""><i></span><i><span style="font-family:"">S. thermophilus</span></i><i><span style="font-family:""></i></span></i><span style="font-family:""> and </span><span style="font-family:""><i></span><i><span style="font-family:"">L. bulgaricus</span></i><i><span style="font-family:""></i></span></i><span style="font-family:"">.展开更多
基金supported by the National Natural Science Foundation of China(31871829,31820103010,and 32021005)the Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province(Jiangsu,China).
文摘Streptococcus thermophilus is one of the most prevalent species in stool samples of westernized populations due to continuous exposure to fermented dairy products.However,few studies have explored the effect on host physiology by multiple S.thermophilus strains and considered the inter-strain differences in regulating host.In the present study,we investigated how four S.thermophilus strains influenced the gut microbiota,mucin changes,and host metabolism after 28 days of intervention in conventional mice.The results indicated that the consumption of S.thermophilus affected the host with strain specificity.Among four S.thermophilus strains,DYNDL13-4 and DQHXNQ38M61,especially DQHXNQ38M61,had more effect on host physiology by modulating gut microbiota and host metabolism than LMD9 and 4M6.Ingestion of strains DYNDL13-4 and DQHXNQ38M61 resulted in more remarkable changes in amino acid metabolism and lipid metabolism than that of strains LMD9 and 4M6,which may be related to the elevation of intestinal Bifidobacterium by DYNDL13-4 and DQHXNQ38M61.The enriched Coriobacteriaceae UCG-002,Rikenellaceae RC9 gut group,and Lactobacillus only in the DQHXNQ38M61 group,had a close relationship with the prominent effect of DQHXNQ38M61 on regulating amino acid and lipid metabolism.In addition,DQHXNQ38M61 had a strong influence on degrading colonic mucin fucose by decreasedα-fucosidase activity in feces,and improving mucin sulfation by upregulated Gal3ST2 expression.Comparative genomic analysis revealed that the four S.thermophilus strains belonged to different branches in the phylogenetic tree,and DYNDL13-4 and DQHXNQ38M61 had more genes involved in carbohydrate metabolism,amino acid metabolism,membrane transport,and signal transduction,which may confer the capacity of nutrient utilization and gastrointestinal adaptation of the strains and be associated with their strong regulation in host.Our study provides valuable information for understanding the regulation of host metabolism after consuming different S.thermophilus strains and could facilitate potential personalized applications of S.thermophilus based on strain varieties.
基金Supported by CONICET, ANPCyT (project BID 1728 OC/AR PICTR 20801) and CIUNT, Argentina
文摘AIM: To investigate the potential therapeutic effect of exopolysaccharide (EPS)-producing Streptococcus thermophilus (S. thermophilus) CRL 1190 fermented milk on chronic gastritis in Balb/c mice. METHODS: Balb/c mice were fed with the fermented milk for 7 d after inducing gastritis with acetyl-salicylic acid (ASA, 400 mg/kg body weight per day for 10 d). Omeprazole was included in this study as a positive therapeutic control. The gastric in? ammatory activity was evaluated from gastric histology and in? ammation score, number of interleukin-10 (IL-10), interferon-γ (INFγ) and tumor necrosis factor-α (TNF-α) cytokine-producing cells in the gastric mucosa, and thickness of the mucus layer. RESULTS: Animals receiving treatment with the EPS-producing S. thermophilus CRL 1190 fermented milk showed a conserved gastric mucosa structure similar to that of healthy animals. In? ammation scores of the fermented milk-treated mice were lower than those of mice in the gastritis group (0.2 ± 0.03 vs 2.0 ± 0.6, P < 0.05). A marked decrease in INFγ+ (15 ± 1.0 vs 28 ± 1.2, P < 0.05) and TNF-α+ (16 ± 3.0 vs 33 ± 3.0, P < 0.05) cells and an increase in IL-10+ (28 ± 1.5 vs 14 ± 1.3, P < 0.05) cells compared to the gastritis group, was observed. Also, an increase in the thickness of the mucus gel layer (2.2 ± 0.6 vs 1.0 ± 0.3; 5.1 ± 0.8 vs 1.5 ± 0.4 in the corpus and antrum mucosa, respectively, P < 0.05) compared with the gastritis group was noted. A milk suspension of the purif ied EPS from S. thermophilus CRL1190 was also effective as therapy for gastritis.
文摘Probiotic bacteria in plain yogurt namely of Lactobacillus ssp. have been reported to treat thrush, diarrhea, athlete’s foot, jock itch and vaginal yeast infections. Lactobacillus delbrueckii ssp. bulgarius (LB-12) and Streptococcus thermophilus (ST-M5) are lactic acid bacteria widely used in the manufacture of yogurt. Alcohol is used in manufacture of some medications such as cough syrups and some products such as eggnog and rum-raisin ice cream. The objectives were to study the effect of food grade ethanol on the growth of yogurt culture bacteria and the physico-chemical characteristics of therapeutic yogurt. The treatments were 0% (control), 2.5%, 5%, and 7.5% v/v ethanol in plain yogurt. The ethanol was incorporated by stirring it into one day old plain yogurt. Product characteristics were studied weekly for a month of refrigerated (4?C) storage. Data were analyzed using Proc Mixed model of Statistical Analysis System. The ethanol amount × storage period interaction effect was significant for Lactobacillus bulgaricus counts while the ethanol amount × storage period effect was not significant for Streptococcus thermophilus counts, viscosity, pH and titratable acidity (TA). Therapeutic yogurts with ethanol, at these concentrations, can successfully be manufactured without adversely influencing counts of its probiotic bacteria over product shelf life.
文摘目的评价Microreader^(TM)23HS Plex ID System试剂盒中包含的23个常染色体STR基因座在中国北方汉族人群中等位基因频率分布,获得群体遗传数据,探究其在法医学中的应用价值。方法使用Microreader^(TM)23HS Plex ID System试剂盒对中国北方汉族人群548例无关样本DNA进行检测,收集分型数据,计算各基因座的等位基因频率、样本的杂合度(heterozygosity,H)、这些常染色体STR基因座的多态信息含量(polymorphism information content,PIC)、个体识别力(power of discrimination,DP)和非父排除率(probability of paternity exclusion,PE)并使用统计软件对各基因座是否符合Hardy-Weinberg平衡进行检验;同时对Microreader^(TM)23HS Plex ID System的累积个体识别能力(CDP)和累积非父排除率(CPE)进行计算。结果在548例无关样本中23个STR基因座共计检出260个等位基因,等位基因频率为0.0009~0.5902,H为0.611~0.885,PIC为0.577~0.864,DP为0.815~0.973(平均DP为0.922),PE为0.089~0.406,CDP=1-3.663×10^(-27),CPE=1-2.668×10^(-16),所有基因座等位基因的分布符合Hardy-Weinberg平衡。结论Microreader^(TM)23HS Plex ID System的23个基因座在中国北方汉族人群中具有良好的多态性,在法医学个人识别、群体遗传学研究、亲子鉴定,特别是复杂亲缘关系鉴定中应用价值较高。
文摘Mild sonication intensity is an acoustic energy which involves the conversion of electrical signal into a physical vibration modifying the permeability of the cell plasma membrane. The objective of this study was to determine the effect of mild sonication intensities at different temperatures on growth, bile tolerance and protease activity of Streptococcus thermophilus. The treatments were four mild sonication intensities (8.07, 14.68, 19.83 and 23.55 W/cm2) randomized at three different temperatures (4°C, 22°C and 40°C). The energy input (1500 J) was kept constant in all treatments. Control samples did not receive any sonication treatment. Growth and bile tolerance were determined every two hours for 12 h of incubation. Protease activity was determined at 0, 12 and 24 h. Mild sonication conditions included a) mild sonication intensities, b) temperatures and c) times, all three of which played a role in influencing the desirable attributes of Streptococcus salivarius ssp. thermophilus ST-M5. Of all the mild sonication intensities studied, 14.68 W/cm2 had the best overall influence at certain time points for improving bile tolerance and growth at 4°C, growth at 22°C and bile tolerance and growth at 40°C of Streptococcus salivarius ssp. thermophilus ST-M5. Mild sonication intensity of 23.55 W/cm2 had the overall best influence at certain time points for protease activity of Streptococcus salivarius ssp. thermophilus ST-M5 at 40°C. Streptococcus thermophilus ST-M5 pretreatment with some mild sonication conditions can be recommended for improvement of some of its characteristics.
文摘There is a great deal of public interest in the use of herbal remedies. Garlic is said to antiviral and antifungal and along with ginger;they are antibacterial and preventatives for cardiovascular diseases. Ginger is very effective against nausea and has analgesic properties. Onion reduces the risk of developing diabetes and like garlic, has anticancer properties. Streptococcus thermophilus is a lactic acid bacterium that produces lactase, which facilitates the digestion of lactose in milk, decreases the symptoms of malabsorption, and reduces the risk of antibiotic associated diarrhea. Acid tolerance is an important probiotic characteristic and it is an indication of the ability of the microorganism to withstand the acidic pH of the stomach. Freshly thawed culture was inoculated in acidified MRS broth at pH 2 and 1% v/v of freshly ex-tracted spice juice was added. Control was without spice juice. Growth was determined hourly during 2 hours of incu-bation at 37?C. Bacterial culture treated with all three spices individually showed a significant increase in counts at 0 and 1 hours of incubation when compared to control. After 2 hours of incubation, culture exposed to ginger showed no significant difference compared to control, while there were slight yet significantly lower counts for culture exposed to garlic and onion individually. Among the spices, ginger had the best overall effect. These three spices can be used with Streptococcus thermophilus enabling health benefits from both sources.
文摘The sterilization conditions between experiment and dairy industrial level are different and concern about influence on product’s qualities. In this study, the fermentation properties of Streptococcus thermophilus, alone and in combination with Lactobacillus delbrueckii subsp. bulgaricus, were evaluated in skim milk that had been subjected to distinct sterilization conditions. Growth, organic acid generation, and EPS production were determined using pasteurized or autoclaved milk. When S. thermophilus was cultivated in pasteurized skim milk, the growth was strain-dependent. On the other hand, growth of S. thermophilus was accelerated in autoclaved milk. Exocellular polysaccharide (EPS) production by L. bulgaricus was not affected by the combination of S. thermophilus strains. Thus, we observed that yogurt fermented by L. bulgaricus was minimally affected by the combination of S. thermophilus strains;growth of L. bulgaricus was maintained under the constant environment. These results should facilitate the development of fermented milk produced from L. bulgaricus in the dairy industry.
文摘Consu<span>mption of flaxseed provides health benefits. Bile tolerance allows </span>survival of probiotics in the intestinal tract. The objective was to determine whether or not flaxseed enhances bile tolerance of </span><span style="font-family:""><i></span><i><span style="font-family:"">Lactobacillus acidophilus</span></i><span style="font-family:""> (<i>L. acidophilus</i></span><i><span style="font-family:""></i></span></i><span style="font-family:"">) LA-K<i>, </i></span><i><span style="font-family:""><i></span></i><i><span style="font-family:"">Lactobacillus delbruekii</span></i><i><span style="font-family:""></i></span></i><span style="font-family:""> ssp.<i> </i></span><i><span style="font-family:""><i></span></i><i><span style="font-family:"">bulgaricus </span></i><span style="font-family:"">(</span><i><span style="font-family:"">L. bulgaricus</span></i><i><span style="font-family:""></i></span></i><span style="font-family:"">) LB-12,<span> </span></span><span style="font-family:"">and </span><span style="font-family:""><i></span><i><span style="font-family:"">Streptococcus salivarius</span></i><i><span style="font-family:""></i></span></i><i><span style="font-family:""> </span></i><span style="font-family:"">ssp.<i> </i></span><i><span style="font-family:""><i></span></i><i><span style="font-family:"">thermophilus </span></i><span style="font-family:"">(<i>S. </i></span><i><span style="font-family:"">thermophilus</span></i><i><span style="font-family:""></i></span></i><span style="font-family:"">) ST-M5</span><i><span style="font-family:"">. </span></i><span style="font-family:"">Control and experimental (62 g flaxseed/L) broths containing 0.3% oxgall were prepared for each culture, sterilized, cooled, inoculated, and plated for 8 h. <span>Growth of each microorganism in both the control and </span>experimental broths was evaluated by the slope of the regression line of its log count versus time after inoculation. Flaxseed significantly enhanced growth of </span><span style="font-family:""><i></span><i><span style="font-family:"">L.</span></i><i><span style="font-family:""> acidophilus</span></i><i><span style="font-family:""></i></span></i><span style="font-family:""> but not </span><span style="font-family:""><i></span><i><span style="font-family:"">L. </span></i><i><span style="font-family:"">bulgaricus</span></i><i><span style="font-family:""></i></span></i><span style="font-family:""> and </span><span style="font-family:""><i></span><i><span style="font-family:"">S. thermophilus</span></i><i><span style="font-family:""></i></span></i><span style="font-family:""> over 8 h compared to its corresponding control. Therefore, flaxseed improved the bile tolerance of </span><span style="font-family:""><i></span><i><span style="font-family:"">L. acidophilus</span></i><i><span style="font-family:""></i></span></i><i><span style="font-family:""> </span></i><span style="font-family:"">but not of </span><span style="font-family:""><i></span><i><span style="font-family:"">S. thermophilus</span></i><i><span style="font-family:""></i></span></i><span style="font-family:""> and </span><span style="font-family:""><i></span><i><span style="font-family:"">L. bulgaricus</span></i><i><span style="font-family:""></i></span></i><span style="font-family:"">.