Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation...Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.展开更多
Fault diagnosis for helicopter's main gearbox based on vibration signals by experiments always requires high costs. To solve this problem,a helicopter's planetary gear system is taken as an example. Firstly,a ...Fault diagnosis for helicopter's main gearbox based on vibration signals by experiments always requires high costs. To solve this problem,a helicopter's planetary gear system is taken as an example. Firstly,a simulation model is established by McFadden,and analyzed under ideal condition. Then this model is developed and improved as the delay-time model of the vibration signal which determines the phase-change of sidebands when the system is running. The cause and change-rules of planetary gear system's vibration signal are analyzed to establish the fault diagnosis model.At the same time,the vibration signal of fault condition is simulated and analyzed. This simulation method can provide a reference for fault monitoring and diagnosis for planetary gear system.展开更多
According to the characteristics of gear fault vibration signals, a methodfor gear fault diagnosis based upon the empirical mode decomposition (EMD) is proposed in thispaper. By using EMD, any complicated signal can b...According to the characteristics of gear fault vibration signals, a methodfor gear fault diagnosis based upon the empirical mode decomposition (EMD) is proposed in thispaper. By using EMD, any complicated signal can be decomposed into a finite and often small numberof intrinsic mode functions (IMFs) , which are based upon the local characteristic time scale of thesignal. Thus, EMD is perfectly suitable for non-stationary signal processing and faultcharacteristics extracting. It is well known that a gear vibration signal consists of a number offrequency family components, each of which is a modulated signal. Thus, we can use EMD to decomposea gear fault vibration signal into a number of IMF components, some of which correspond to thefrequency families, and the others are noises. Therefore, the frequency families can be separatedand the noise can be decreased at the same time. The proposed method has been applied to gear faultdiagnosis. The results show that both the sensitivity and the reliability of this method aresatisfactory.展开更多
Because the extract of the weak failure information is always the difficulty and focus of fault detection. Aiming for specific statistical properties of complex wavelet coefficients of gearbox vibration signals, a new...Because the extract of the weak failure information is always the difficulty and focus of fault detection. Aiming for specific statistical properties of complex wavelet coefficients of gearbox vibration signals, a new signal-denoising method which uses local adaptive algorithm based on dual-tree complex wavelet transform (DT-CWT) is introduced to extract weak failure information in gear, especially to extract impulse components. By taking into account the non-Gaussian probability distribution and the statistical dependencies among wavelet coefficients of some signals, and by taking the advantage of near shift-invariance of DT-CWT, the higher signal-to-noise ratio (SNR) than common wavelet denoising methods can be obtained. Experiments of extracting periodic impulses in gearbox vibration signals indicate that the method can extract incipient fault feature and hidden information from heavy noise, and it has an excellent effect on identifying weak feature signals in gearbox vibration signals.展开更多
文摘Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.
文摘Fault diagnosis for helicopter's main gearbox based on vibration signals by experiments always requires high costs. To solve this problem,a helicopter's planetary gear system is taken as an example. Firstly,a simulation model is established by McFadden,and analyzed under ideal condition. Then this model is developed and improved as the delay-time model of the vibration signal which determines the phase-change of sidebands when the system is running. The cause and change-rules of planetary gear system's vibration signal are analyzed to establish the fault diagnosis model.At the same time,the vibration signal of fault condition is simulated and analyzed. This simulation method can provide a reference for fault monitoring and diagnosis for planetary gear system.
文摘According to the characteristics of gear fault vibration signals, a methodfor gear fault diagnosis based upon the empirical mode decomposition (EMD) is proposed in thispaper. By using EMD, any complicated signal can be decomposed into a finite and often small numberof intrinsic mode functions (IMFs) , which are based upon the local characteristic time scale of thesignal. Thus, EMD is perfectly suitable for non-stationary signal processing and faultcharacteristics extracting. It is well known that a gear vibration signal consists of a number offrequency family components, each of which is a modulated signal. Thus, we can use EMD to decomposea gear fault vibration signal into a number of IMF components, some of which correspond to thefrequency families, and the others are noises. Therefore, the frequency families can be separatedand the noise can be decreased at the same time. The proposed method has been applied to gear faultdiagnosis. The results show that both the sensitivity and the reliability of this method aresatisfactory.
基金Beijing Municipal Natural Science Foundation of China (No. 3062012).
文摘Because the extract of the weak failure information is always the difficulty and focus of fault detection. Aiming for specific statistical properties of complex wavelet coefficients of gearbox vibration signals, a new signal-denoising method which uses local adaptive algorithm based on dual-tree complex wavelet transform (DT-CWT) is introduced to extract weak failure information in gear, especially to extract impulse components. By taking into account the non-Gaussian probability distribution and the statistical dependencies among wavelet coefficients of some signals, and by taking the advantage of near shift-invariance of DT-CWT, the higher signal-to-noise ratio (SNR) than common wavelet denoising methods can be obtained. Experiments of extracting periodic impulses in gearbox vibration signals indicate that the method can extract incipient fault feature and hidden information from heavy noise, and it has an excellent effect on identifying weak feature signals in gearbox vibration signals.