期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Effects of intermediate stress on deep rock strainbursts under true triaxial stresses 被引量:1
1
作者 Lihua Hu Liyuan Yu +2 位作者 Minghe Ju Xiaozhao Li Chun’an Tang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期659-682,共24页
The effect of intermediate stress(in situ tunnel axial)on a strainburst is studied with a threedimensional(3D)bonded block distinct element method(DEM).A series of simulations of strainbursts under true triaxial in si... The effect of intermediate stress(in situ tunnel axial)on a strainburst is studied with a threedimensional(3D)bonded block distinct element method(DEM).A series of simulations of strainbursts under true triaxial in situ stress conditions(i.e.high tangential stress,moderate intermediate stress and low radial stress)of near-boundary rock masses are performed.Compared with the experimental results,the DEM model is able to capture the stress-strain response,failure pattern and energy balance of strainbursts.The fracturing processes of strainbursts are also numerically reproduced.Numerical results show that,as the intermediate stress increases:(1)The peak strain of strainbursts increases,the yield stress increases,the rock strength increases linearly,and the ratio of yield stress to rock strength decreases,indicating that the precursory information on strainbursts is enhanced;(2)Tensile and shear cracks increase significantly,and slabbing and bending of rock plates are more pronounced;and(3)The stored elastic strain energy and dissipated energy increase linearly,whereas the kinetic energy of the ejected rock fragments increases approximately exponentially,implying an increase in strainburst intensity.By comparing the experimental and numerical results,the effect of intermediate stress on the rock strength of strainbursts is discussed in order to address three key issues.Then,the Mogi criterion is applied to construct new strength criteria for strainbursts by converting the one-face free true triaxial stress state of a strainburst to its equivalent true triaxial stress state.In summary,the effect of intermediate stress on strainbursts is a double-edged sword that can enhance the rock strength and the precursory information of a strainburst,but also increase its intensity. 展开更多
关键词 strainbursts Intermediate stress Distinct element method(DEM) Structural failure True triaxial Strength criterion
下载PDF
Deformation characteristics and novel strain criteria of strainbursts induced by low-frequency cyclic disturbance 被引量:2
2
作者 Lihua Hu Minghe Ju +1 位作者 Peng Zhao Xiaozhao Li 《Deep Underground Science and Engineering》 2023年第1期52-60,共9页
Strainbursts induced by cyclic disturbance with low frequency(termed as cyclicinduced strainbursts)are major dynamic disasters during deep excavation and mining.There is currently no quantitative criterion available f... Strainbursts induced by cyclic disturbance with low frequency(termed as cyclicinduced strainbursts)are major dynamic disasters during deep excavation and mining.There is currently no quantitative criterion available for the prediction of such disastrous events.In this study,based on true triaxial experiments,we analyzed the deformation characteristics,established two novel strain criteria for the cyclic-induced strainbursts,and explained the physical meaning of these criteria.Characteristic strains for the cyclic-induced strainbursts were defined,including the control strain ε_(ctr),the strain caused by the combined dynamic and static loading ε_(sd),and the ultimate strain ε_(u) after strainbursts.As indicated by the results,the deformation evolution of the cyclic-induced strainbursts shows remarkable fatigue characteristics,which resemble that of rock subjected to cyclic loading and unloading.In other words,there are three stages during deformation evolution,namely,initial rapid growth,uniform velocity growth after several periods of disturbance,and sudden sharp growth preceding the burst.The ultimate strain ε_(u) is insensitive to the tangential static stress and disturbance amplitude,but it changes nonlinearly with disturbance frequency.From the perspective of deformation,the occurrence of a cyclic-induced strainburst is controlled by the control strainε_(ctr).Thus,a control strain criterion is proposed;that is,when the stain ε_(sd) is larger than the control strain ε_(ctr),a strainburst will be induced by cyclic disturbance.Moreover,based on the statistical results,a strain ratio criterion is proposed;that is,when the strain ratio ε_(sd)/ε_(u) is greater than 30%,a cyclic-induced strainburst will be induced. 展开更多
关键词 dynamic disturbance low frequency strainbursts strain criteria true triaxial
下载PDF
Analysis of the damage mechanism of strainbursts by a global-local modeling approach 被引量:2
3
作者 Jun Wang Derek B.Apel +4 位作者 Artur Dyczko Andrzej Walentek Stanislaw Prusek Huawei Xu Chong Wei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1671-1696,共26页
Strainburst is the most common type of rockbursts.The research of strainburst damage mechanisms is helpful to improve and optimize the rock support design in the burst-prone ground.In this study,an improved global-loc... Strainburst is the most common type of rockbursts.The research of strainburst damage mechanisms is helpful to improve and optimize the rock support design in the burst-prone ground.In this study,an improved global-local modeling approach was first adopted to study strainburst damage mechanisms.The extracted stresses induced by multiple excavations from a three-dimensional(3D)global model established by fast Lagrangian analysis of continua in 3 dimensions(FLAC3D)are used as boundary conditions for a two-dimensional(2D)local model of a deep roadway built by universal distinct element code(UDEC)to simulate realistic stress loading paths and conduct a detailed analysis of rockburst damage from both micro and macro perspectives.The results suggest that the deformation and damage level of the roadway gradually increase with the growth of surrounding rock stress caused by the superposition of mining-or excavation-induced stresses of the panel and nearby roadways.The significant increase of surrounding rock stresses will result in more accumulated strain energy in two sidewalls,providing a necessary condition for the strainburst occurrence in the dynamic stage.The strainburst damage mechanism for the study site combines three types of damage:rock ejection,rock bulking,and rockfall.During the strainburst,initiation,propagation,and development of tensile cracks play a crucial role in controlling macroscopic failure of surrounding rock masses,although the shear crack always accounts for the main proportion of damage levels.The deformation and damage level of the roadway during a strainburst positively correlate with the increasing peak particle velocities(PPVs).The yielding steel arch might not dissipate kinetic energy and mitigate strainburst damage effectively due to the limited energy absorption capacity.The principles to control and mitigate strainburst damage are proposed in this paper.This study presents a systematic framework to investigate strainburst damage mechanisms using the global-local modeling approach. 展开更多
关键词 Strainburst Numerical modeling Damage mechanism Finite difference method(FDM) Discrete element method(DEM) Underground mining
下载PDF
Large-scale destress blasting for seismicity control in hard rock mines:A case study 被引量:6
4
作者 Isaac Vennes Hani Mitri +1 位作者 Damodara Reddy Chinnasane Mike Yao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第2期141-149,共9页
Destress blasting is a rockburst control technique where highly stressed rock is blasted to reduce the local stress and stiffness of the rock,thereby reducing its burst proneness.The technique is commonly practiced in... Destress blasting is a rockburst control technique where highly stressed rock is blasted to reduce the local stress and stiffness of the rock,thereby reducing its burst proneness.The technique is commonly practiced in deep hard rock mines in burst prone developments,as well as in sill or crown pillars which become burst-prone as the orebody is extracted.Large-scale destressing is a variant of destress blasting where panels are created parallel to the orebody strike with a longhole,fanning blast pattern from cross cut drifts situated in the host rock.The aim of panel destressing is to reduce the stress concentration in the ore blocks or pillars to be mined.This paper focuses on the large-scale destress blasting program conducted at Vale's Copper Cliff Mine(CCM)in Ontario,Canada.The merits of panel destressing are examined through field measurements of mining induced stress changes in the pillar.The destressing mechanism is simulated with a rock fragmentation factor(a)and stress reduction/dissipation factor(b).A 3D model is built and validated with measured induced stress changes.It is shown that the best correlation between the numerical model and field measurements is obtained when the combination of a and b indicates that the blast causes high fragmentation(a=0.05)and high stress release(b=0.95)in the destress panel.It is demonstrated that the burst proneness of the ore blocks in the panel stress shadow is reduced in terms of the brittle shear ratio(BSR)and the burst potential index(BPI). 展开更多
关键词 Destress BLASTING PRECONDITIONING Rockbursts strainbursts NUMERICAL modeling
下载PDF
Geomechanical effects of stress shadow created by large-scale destress blasting 被引量:2
5
作者 Isaac Vennes Hani Mitri 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期1085-1093,共9页
This study aims to determine if large-scale choked panel destress blasting can provide sufficient beneficial stress reduction in highly-stressed remnant ore pillar that is planned for production. The orebody is divide... This study aims to determine if large-scale choked panel destress blasting can provide sufficient beneficial stress reduction in highly-stressed remnant ore pillar that is planned for production. The orebody is divided into 20 stopes over 2 levels, and 2 panels are choke-blasted in the hanging wall to shield the ore pillar by creating a stress shadow around it. A linear-elastic model of the mining system is constructed with finite difference code FLAC3 D. The effect of destress blasting in the panels is simulated by applying a fragmentation factor(α) to the rock mass stiffness and a stress reduction factor(β) to the current state of stress in the region occupied by the destress panels. As an extreme case, the destress panel is also modeled as a void to obtain the maximum possible beneficial effects of destressing and stress shadow.Four stopes are mined in the stress shadow of the panels in 6 lifts and then backfilled. The effect of destress blasting on the remnant ore pillar is quantified based on stress change and brittle shear ratio(BSR) in the stress shadow zone compared to the base case without destress blasting. To establish realistic rock fragmentation and stress reduction factors, model results are compared to measured stress changes reported for case studies at Fraser and Brunswick mines. A 1.5 MPa immediate stress decrease was observed 20 m away from the panel at Fraser Mine, and a 4 MPa immediate stress decrease was observed 25 m away at Brunswick Mine. Comparable results are obtained from the current model with a rock fragmentation factor α of 0.2 and a stress reduction factor α of 0.8. It is shown that a destress blasting with these parameters reduces the major principal stress in the nearest stopes by 10-25 MPa.This yields an immediate reduction of BSR, which is deemed sufficient to reduce volume of ore at risk in the pillar. 展开更多
关键词 Destress blasting PRECONDITIONING Rockbursts strainbursts Numerical modeling Rock failure
下载PDF
Rock support in strainburst-prone ground 被引量:9
6
作者 M.Cai 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第4期529-534,共6页
Strainburst is the most frequently encountered type of rockburst in underground mines.Strainburst occurs when the stress near the excavation boundary reaches the peak strength of the rock mass causing it to fail sudde... Strainburst is the most frequently encountered type of rockburst in underground mines.Strainburst occurs when the stress near the excavation boundary reaches the peak strength of the rock mass causing it to fail suddenly and violently.To mitigate strainburst damage risk,effective rock support is needed.In strainburst-prone grounds,it is critical to have rock support components to fulfill the role of rock reinforcement first to prevent rock failure.On the other hand,well-retained and reinforced rock masses may be excessively deformed and fail violently.In such a case,yielding elements are needed in the rock support system to absorb the excess strain energy released due to rock failure.The conventional method to support strainburst-prone grounds is to install rock reinforcement system using rebar and mesh first and then install yielding support system using dynamic rockbolts at a later stage.This two-stage rock support installation process is not effective because it can adversely impact mine production schedule.This paper presents a new,patented dynamic rockbolt,which is called superbolt and is developed for rock support in burst-prone grounds.Laboratory testing confirmed that the superbolt has superb capacity to achieve the goal of reinforcing and holding rock masses.The superbolt is characterized by high dynamic energy absorption capacity,consistent performance,and the ability to withstand repeated dynamic loading.The new rockbolt can be used in a one-pass rock support system to facilitate rapid drift development in underground mines and increase mine safety and productivity. 展开更多
关键词 ROCKBURST Strainburst ROCK SUPPORT Dynamic FAILURE Energy Capacity
下载PDF
Rockburst characteristics of several hard brittle rocks:A true triaxial experimental study 被引量:7
7
作者 Shaobin Zhai Guoshao Su +2 位作者 Shunde Yin Bin Zhao Liubin Yan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第2期279-296,共18页
Rockburst is a typical rock failure which frequently threatens both human life and construction equipment during highly stressed underground excavation.Rock lithology is a control factor of rockburst.In this paper,roc... Rockburst is a typical rock failure which frequently threatens both human life and construction equipment during highly stressed underground excavation.Rock lithology is a control factor of rockburst.In this paper,rockburst tests were conducted on rectangular prismatic specimens of six types of intact hard brittle rocks,i.e.granodiorite,granite,marble,basalt,sandstone and limestone,under one-free-face true triaxial loading conditions.With the use of high-speed cameras,an acoustic emission(AE)system and a scanning electron microscope(SEM),rockburst of different rocks was investigated.The results show that the strainbursts of granodiorite,granite and marble were accompanied by tensile splitting near the free face,and consequently were relatively strong with a large amount of fragment ejection and kinetic energy release.For basalt,sandstone and limestone,failure was primarily dominated by shear rupture.The strainbursts of basalt and sandstone were relatively small with minor fragment ejection and kinetic energy release;while no burst failure occurred on limestone due to its relatively low peak strength.Rock strength,fracturing and fragmentation characteristics,and failure modes of different rocks can significantly affect rockburst proneness and magnitude.The AE evolution coupled with SEM analysis reveals that the differences in the inhe rent microstructures and fracture evolution under loading are the primary factors accounting for different rockbursts in various rock types. 展开更多
关键词 ROCKBURST Strainburst HARD BRITTLE rocks TRUE TRIAXIAL test Acoustic emission(AE)
下载PDF
Numerical study on rock failure around a tunnel destressed by a conceptualized notched technique 被引量:2
8
作者 Amin Manouchehrian Pinnaduwa H.S.W.Kulatilake 《Underground Space》 SCIE EI 2022年第6期1086-1097,共12页
A destressing method for reducing the strainburst risk in burst-prone grounds is suggested.In this method,the rock is destressed by cutting notches at the excavation boundary.First,the concept of the proposed method i... A destressing method for reducing the strainburst risk in burst-prone grounds is suggested.In this method,the rock is destressed by cutting notches at the excavation boundary.First,the concept of the proposed method is described both analytically and numerically.Then,the method is applied to a tunneling problem.Several numerical models are built to study the destressing process and the failure mechanism around a circular tunnel.Results show that when the notch is added to the model,the rock at the tunnel wall is destressed,and the stress concentration zones shift to a farther distance away from the wall.Also,the analysis of the failure zone around the tunnel and the velocity of the failed elements show that the failure in the notched tunnel is less violent compared to that in the tunnel without the notch.Finally,a parametric study is conducted to investigate the influences of the notch dimensions on the stress distribution,deformation,and failures around the tunnel. 展开更多
关键词 Strainburst DESTRESSING Deep excavation Notched tunnel Rock violent failure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部