The investigation on optical properties of Si1-xGex/Si strained layer structures has been carried out actively in recent years. The photoluminescence has become a brisker subject in the studies of its various optical ...The investigation on optical properties of Si1-xGex/Si strained layer structures has been carried out actively in recent years. The photoluminescence has become a brisker subject in the studies of its various optical properties. A research development on photoluminescence properties of some new Si1-x Gex/Si strained layer structures is introduced.展开更多
The electronic structures of (CdSe)n/(ZnSe)m strained-lager soperfattice (SLS) were investigated by the recursion method in the tight-bindiop opproximation. The total,local, and partial density of states were calculat...The electronic structures of (CdSe)n/(ZnSe)m strained-lager soperfattice (SLS) were investigated by the recursion method in the tight-bindiop opproximation. The total,local, and partial density of states were calculated for n=1, m=5.The total density of states (TDOS) for bulk CdSe, ZnSe and n=1, 3, m=1, 3, 5, for SLS were investigated.Fermi energy, the band gap, the valence of an atom, and the ionization potential and the electron affinity were discassed.展开更多
In this paper, the analytical solution of stress field for a strained reinforcement layer bonded to a lip-shaped crack under a remote mode III uniform load and a concentrated load is obtained explicitly in the series ...In this paper, the analytical solution of stress field for a strained reinforcement layer bonded to a lip-shaped crack under a remote mode III uniform load and a concentrated load is obtained explicitly in the series form by using the technical of conformal mapping and the method of analytic continuation. The effects of material combinations, bond of interface and geometric configurations on interfaciai stresses generated by eigenstrain, remote load and concentrated load are studied. The results show that the stress concentration and interfaciai stresses can be reduced by rational material combinations and geometric configurations designs for different load forms.展开更多
Rectangular Schottky drain AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate contact areas and conventional AlGaN/AlN/GaN HFETs as control were both fabricated with same size. It was...Rectangular Schottky drain AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate contact areas and conventional AlGaN/AlN/GaN HFETs as control were both fabricated with same size. It was found there is a significant difference between Schottky drain AlGaN/AlN/GaN HFETs and the control group both in drain series resistance and in two-dimensional electron gas (2DEG) electron mobility in the gate–drain channel. We attribute this to the different influence of Ohmic drain contacts and Schottky drain contacts on the strained AlGaN barrier layer. For conventional AlGaN/AlN/GaN HFETs, annealing drain Ohmic contacts gives rise to a strain variation in the AlGaN barrier layer between the gate contacts and the drain contacts, and results in strong polarization Coulomb field scattering in this region. In Schottky drain AlGaN/AlN/GaN HFETs, the strain in the AlGaN barrier layer is distributed more regularly.展开更多
The damaged and strain subsurface layers of semi insulating(SI) GaAs substrate were characterized non destructively by Raman back scattering.The study shows that the thicknesses of the damaged and strain layers are...The damaged and strain subsurface layers of semi insulating(SI) GaAs substrate were characterized non destructively by Raman back scattering.The study shows that the thicknesses of the damaged and strain layers are less than 3μm.The damaged and strain layer can be removed after being etched in H 2SO 4·H 2O 2·H 2O for 1.5 min.展开更多
Strained InGaAs/GaAs quantum well (QW) was grown by low-pressuremetallorganic chemical vapor deposition (MOCVD). Growth interruption and strain buffer layer wereintroduced to improve the photoluminescence (PL) perform...Strained InGaAs/GaAs quantum well (QW) was grown by low-pressuremetallorganic chemical vapor deposition (MOCVD). Growth interruption and strain buffer layer wereintroduced to improve the photoluminescence (PL) performance of the InGaAs/GaAs quantum well. GoodPL results were obtained under condition of growth an interruption of 10 s combined with a moderatestrain buffer layer. Wavelength lasers of 1064 nm using the QW were grown and processed intodevices. Broad area lasers (100 μm x 500 μm) show very low threshold current densities (43 A/cm^2)and high slop efficiency (0.34 W/A, per facet).展开更多
The strain and electron energy levels of InAs/GaAs(001) quantum dots (QDs) with a GaNAs strain compensation layer (SCL) are investigated. The results show that both the hydrostatic and biaxiai strain inside the ...The strain and electron energy levels of InAs/GaAs(001) quantum dots (QDs) with a GaNAs strain compensation layer (SCL) are investigated. The results show that both the hydrostatic and biaxiai strain inside the QDs with a GaNAs SCL are reduced compared with those with GaAs capping layers. Moreover, most of the compressive strain in the growth surface is compensated by the tensile strain of the GaNAs SCL, which implies that the influence of the strain environment of underlying QDs upon the next-layer QDs' growth surface is weak and suggests that the homogeneity and density of QDs can be improved. Our results are consistent with the published experimental literature. A GaNAs SCL is shown to influence the strain and band edge. As is known, the strain and the band offset affect the electronic structure, which shows that the SCL is proved to be useful to tailor the emission wavelength of QDs. Our research helps to better understand how the strain compensation technology can be applied to the growth of stacked QDs, which are useful in solar cells and laser devices.展开更多
In this manuscript we analyze a unique approach to improve the performance of the bipolar charge plasma transistor(BCPT) by introducing a strained Si/SiGe1-x layer as the active device region. For charge plasma realiz...In this manuscript we analyze a unique approach to improve the performance of the bipolar charge plasma transistor(BCPT) by introducing a strained Si/SiGe1-x layer as the active device region. For charge plasma realization different metal work-function electrodes are used to induce n+ and p+ regions on undoped strained silicon-on-insulator(sSOI or SiGe) to realize emitter, base, and collector regions of the BCPT. Here,by using a calibrated 2-D TCAD simulation the impact of a Si mole fraction x(in SiGe) on device performance metrics is investigated. The analysis demonstrates the band gap lowering with decreasing Si content or effective strain on the Si layer, and its subsequent advantages. This work reports a significant improvement in current gain, cutoff frequency, and lower collector breakdown voltage(BVCEO) for the proposed structure over the conventional device. The effect of varying temperature on the strained Si layer and its implications on the device performance is also investigated. The analysis demonstrates a fair device-level understanding and exhibits the immense potential of the SiGematerial as the device layer. In addition to this, using extensive 2-D mixed-mode TCAD simulation, a considerable improvement in switching transient times are also observed compared to its conventional counterpart.展开更多
Sodium-ion batteries are promising for large-scale energy storage due to sodium's low cost and infinite abundance. The most popular cathodes for sodium-ion batteries, i.e., the layered sodium-containing oxides, us...Sodium-ion batteries are promising for large-scale energy storage due to sodium's low cost and infinite abundance. The most popular cathodes for sodium-ion batteries, i.e., the layered sodium-containing oxides, usually exhibit reversible host rearrangement between P-type and O-type stacking upon charge/discharge. Herein we demonstrate that such host rearrangement is unfavorable and can be suppressed by introducing transition-metal ions into sodium layers. The electrode with stabilized P3-type stacking delivers superior rate capability, high energy efficiency, and excellent cycling performance. Owing to the cation-mixing nature, it performs the lowest lattice strain among all reported cathodes for sodium-ion batteries. Our findings highlight the significance of a stable host for sodium-ion storage and moreover underline the fundamental distinction in material design strategy between lithium-and sodium-ion batteries.展开更多
BiFeO_3 (BFO) thin films with BaTiO_3 (BTO) or SrTiO_3 (STO) as buffer layer were epitaxially grown on SrRuO_3-covered SrTiO_3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain ...BiFeO_3 (BFO) thin films with BaTiO_3 (BTO) or SrTiO_3 (STO) as buffer layer were epitaxially grown on SrRuO_3-covered SrTiO_3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain in the BFO films, whereas the STO buffer causes compressive strain. Different ferroelectric domain structures caused by these two strain statuses are revealed by piezoelectric force microscopy. Electrical and magnetical measurements show that the tensile-strained BFO/BTO samples have reduced leakage current and large ferroelectric polarization and magnetization, compared with compressively strained BFO/STO. These results demonstrate that the electrical and magnetical properties of BFO thin films can be artificially modified by using a buffer layer.展开更多
The effect of surface state on the nodular corrosion resistance of Zircaloy-4 alloy was investigated in super- heated steam at 500 ℃/10.3 MPa by autoclave tests. The microstructures of oxide films on the corroded spe...The effect of surface state on the nodular corrosion resistance of Zircaloy-4 alloy was investigated in super- heated steam at 500 ℃/10.3 MPa by autoclave tests. The microstructures of oxide films on the corroded specimens were observed by TEM and SEM. The results indicate that surface strained layer delays the appearance of nodular spots on the specimen surfaces and improves the nodular corrosion resistance. The columnar grains orientation of the oxide films formed on the specimens with surface strained layer was more consistent than that on the specimens without surface strained layer when a comparison was made on the same orientation of the grain surfaces. Such a kind of oxide micro- structure formed on the specimens with surface strained layer can hinder the diffusion of oxygen ions along the grain boundaries and delay the growth of oxide films, therefore retard the formation process of nodular spots. This indicates that the microstructure of the initial oxide films has an important influence on the subsequent growth of the oxide films.展开更多
文摘The investigation on optical properties of Si1-xGex/Si strained layer structures has been carried out actively in recent years. The photoluminescence has become a brisker subject in the studies of its various optical properties. A research development on photoluminescence properties of some new Si1-x Gex/Si strained layer structures is introduced.
文摘The electronic structures of (CdSe)n/(ZnSe)m strained-lager soperfattice (SLS) were investigated by the recursion method in the tight-bindiop opproximation. The total,local, and partial density of states were calculated for n=1, m=5.The total density of states (TDOS) for bulk CdSe, ZnSe and n=1, 3, m=1, 3, 5, for SLS were investigated.Fermi energy, the band gap, the valence of an atom, and the ionization potential and the electron affinity were discassed.
基金Project supported by the National Natural Science Foundation of China(Nos.10872065 and 50801025)the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(No. 60870005)the Doctor Station Fund of Institutions of Higher Learning(No.200805320023)
文摘In this paper, the analytical solution of stress field for a strained reinforcement layer bonded to a lip-shaped crack under a remote mode III uniform load and a concentrated load is obtained explicitly in the series form by using the technical of conformal mapping and the method of analytic continuation. The effects of material combinations, bond of interface and geometric configurations on interfaciai stresses generated by eigenstrain, remote load and concentrated load are studied. The results show that the stress concentration and interfaciai stresses can be reduced by rational material combinations and geometric configurations designs for different load forms.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11174182)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110131110005)
文摘Rectangular Schottky drain AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate contact areas and conventional AlGaN/AlN/GaN HFETs as control were both fabricated with same size. It was found there is a significant difference between Schottky drain AlGaN/AlN/GaN HFETs and the control group both in drain series resistance and in two-dimensional electron gas (2DEG) electron mobility in the gate–drain channel. We attribute this to the different influence of Ohmic drain contacts and Schottky drain contacts on the strained AlGaN barrier layer. For conventional AlGaN/AlN/GaN HFETs, annealing drain Ohmic contacts gives rise to a strain variation in the AlGaN barrier layer between the gate contacts and the drain contacts, and results in strong polarization Coulomb field scattering in this region. In Schottky drain AlGaN/AlN/GaN HFETs, the strain in the AlGaN barrier layer is distributed more regularly.
文摘The damaged and strain subsurface layers of semi insulating(SI) GaAs substrate were characterized non destructively by Raman back scattering.The study shows that the thicknesses of the damaged and strain layers are less than 3μm.The damaged and strain layer can be removed after being etched in H 2SO 4·H 2O 2·H 2O for 1.5 min.
文摘Strained InGaAs/GaAs quantum well (QW) was grown by low-pressuremetallorganic chemical vapor deposition (MOCVD). Growth interruption and strain buffer layer wereintroduced to improve the photoluminescence (PL) performance of the InGaAs/GaAs quantum well. GoodPL results were obtained under condition of growth an interruption of 10 s combined with a moderatestrain buffer layer. Wavelength lasers of 1064 nm using the QW were grown and processed intodevices. Broad area lasers (100 μm x 500 μm) show very low threshold current densities (43 A/cm^2)and high slop efficiency (0.34 W/A, per facet).
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60908028, 60971068, 10979065, and 61275201)the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2011RC0402)the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-10-0261)
文摘The strain and electron energy levels of InAs/GaAs(001) quantum dots (QDs) with a GaNAs strain compensation layer (SCL) are investigated. The results show that both the hydrostatic and biaxiai strain inside the QDs with a GaNAs SCL are reduced compared with those with GaAs capping layers. Moreover, most of the compressive strain in the growth surface is compensated by the tensile strain of the GaNAs SCL, which implies that the influence of the strain environment of underlying QDs upon the next-layer QDs' growth surface is weak and suggests that the homogeneity and density of QDs can be improved. Our results are consistent with the published experimental literature. A GaNAs SCL is shown to influence the strain and band edge. As is known, the strain and the band offset affect the electronic structure, which shows that the SCL is proved to be useful to tailor the emission wavelength of QDs. Our research helps to better understand how the strain compensation technology can be applied to the growth of stacked QDs, which are useful in solar cells and laser devices.
文摘In this manuscript we analyze a unique approach to improve the performance of the bipolar charge plasma transistor(BCPT) by introducing a strained Si/SiGe1-x layer as the active device region. For charge plasma realization different metal work-function electrodes are used to induce n+ and p+ regions on undoped strained silicon-on-insulator(sSOI or SiGe) to realize emitter, base, and collector regions of the BCPT. Here,by using a calibrated 2-D TCAD simulation the impact of a Si mole fraction x(in SiGe) on device performance metrics is investigated. The analysis demonstrates the band gap lowering with decreasing Si content or effective strain on the Si layer, and its subsequent advantages. This work reports a significant improvement in current gain, cutoff frequency, and lower collector breakdown voltage(BVCEO) for the proposed structure over the conventional device. The effect of varying temperature on the strained Si layer and its implications on the device performance is also investigated. The analysis demonstrates a fair device-level understanding and exhibits the immense potential of the SiGematerial as the device layer. In addition to this, using extensive 2-D mixed-mode TCAD simulation, a considerable improvement in switching transient times are also observed compared to its conventional counterpart.
基金The financial support from the National Basic Research Program of China(2014CB932300)Natural Science Foundation of Jiangsu Province of China(BK20170630)+1 种基金NSF of China(21633003 and 51602144)sponsored by the JST-CREST ‘‘Phase Interface Science for Highly Efficient Energy Utilization",JST(Japan)
文摘Sodium-ion batteries are promising for large-scale energy storage due to sodium's low cost and infinite abundance. The most popular cathodes for sodium-ion batteries, i.e., the layered sodium-containing oxides, usually exhibit reversible host rearrangement between P-type and O-type stacking upon charge/discharge. Herein we demonstrate that such host rearrangement is unfavorable and can be suppressed by introducing transition-metal ions into sodium layers. The electrode with stabilized P3-type stacking delivers superior rate capability, high energy efficiency, and excellent cycling performance. Owing to the cation-mixing nature, it performs the lowest lattice strain among all reported cathodes for sodium-ion batteries. Our findings highlight the significance of a stable host for sodium-ion storage and moreover underline the fundamental distinction in material design strategy between lithium-and sodium-ion batteries.
基金supported by the National Key Basic Research Program of China (Grant Nos. 2014CB921002, and 2013CBA01703)the National Natural Science Foundation of China (Grant Nos. 11174355, 11674385, and 11574365)the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07030200)
文摘BiFeO_3 (BFO) thin films with BaTiO_3 (BTO) or SrTiO_3 (STO) as buffer layer were epitaxially grown on SrRuO_3-covered SrTiO_3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain in the BFO films, whereas the STO buffer causes compressive strain. Different ferroelectric domain structures caused by these two strain statuses are revealed by piezoelectric force microscopy. Electrical and magnetical measurements show that the tensile-strained BFO/BTO samples have reduced leakage current and large ferroelectric polarization and magnetization, compared with compressively strained BFO/STO. These results demonstrate that the electrical and magnetical properties of BFO thin films can be artificially modified by using a buffer layer.
基金financially supported by the National Natural Science Foundation of China (No. 51171102)
文摘The effect of surface state on the nodular corrosion resistance of Zircaloy-4 alloy was investigated in super- heated steam at 500 ℃/10.3 MPa by autoclave tests. The microstructures of oxide films on the corroded specimens were observed by TEM and SEM. The results indicate that surface strained layer delays the appearance of nodular spots on the specimen surfaces and improves the nodular corrosion resistance. The columnar grains orientation of the oxide films formed on the specimens with surface strained layer was more consistent than that on the specimens without surface strained layer when a comparison was made on the same orientation of the grain surfaces. Such a kind of oxide micro- structure formed on the specimens with surface strained layer can hinder the diffusion of oxygen ions along the grain boundaries and delay the growth of oxide films, therefore retard the formation process of nodular spots. This indicates that the microstructure of the initial oxide films has an important influence on the subsequent growth of the oxide films.