This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of exper...This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of experiment was used to arrange finite element analyses and experimental tests.Numerical and experimental tests were executed by changing rotary speed,feed rate and die angle.Taguchi design results show that increasing feed rate and decreasing rotary speed enhance Zener-Hollomon(Z)parameter and decrease average grain size,while die angle has no considerable effect.Increasing Z value reduces grain size and enhances flow stress of the processed samples,while the experiment with the highest Z value refines initial microstructure from 40 to 8μm and increases flow stress by 5 times.展开更多
The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenit...The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenite in microstructure was studied in an iso-stress condition. Hot compression tests were performed at temperatures of 800-1100~C and strain rates of 0.001-1 s-1. The flow stress was modeled by a hyperbolic sine constitutive equation, the corresponding constants and apparent activation energies were determined for the studied alloys. The constitutive equation and law of mixture were used to measure the contribution factor of each phase at any given strain. It is found that the contribution factor of ferrite exponentially declines as the Zener-HoUomon parameter (Z) increases. On the contrary, the austenite contribution polynomially increases with the increase of Z. At low Z values below 2.6. x 1015 (lnZ---35.5), a negative contribution factor is determined for austenite that is attributed to dynamic recrystallization. At high Z values, the contribution factor of austenite is about two orders of magnitude greater than that of ferrite, and therefore, austenite can accommodate more strain. Microstructural characterization via electron back-scattered diffraction (EBSD) confirms the mechanical results and shows that austenite recrystallization is possible only at high temperature and low strain rate.展开更多
The mechanisms responsible for deformation behavior in Nb/NiTi composite during pre-straining were investigated systematically using in-situ synchrotron X-ray diffraction, transmission electron microscopy and tensile ...The mechanisms responsible for deformation behavior in Nb/NiTi composite during pre-straining were investigated systematically using in-situ synchrotron X-ray diffraction, transmission electron microscopy and tensile test. It is shown that upon loading, the composite experiences elastic elongation and slight plastic deformation of B19′,B2 and β-Nb phases, together with the forward stress-induced martensitic(SIM) transformation from B2 to B19′. Upon unloading, the deformation mechanisms of the composite mainly involve elastic recovery of B19′, B2 and β-Nb phases,compression deformation of β-Nb phase and incomplete B19′→B2 reverse SIM transformation. In the tensile loading-unloading procedure, besides the inherent elastic deformation and SIM transformation, the(001) compound twins in B19′ martensite can also be conducive to the elastic deformation occurring in B19′-phase of the composite.Therefore, this composite can exhibit a large recoverable strain after unloading owing to the elastic deformation, and the partially reversible and consecutive SIM transformation together with the(001) compound twins.展开更多
The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic ne...The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks.If the discrete observed velocity field is obtained,the velocity related fields,such as dilatation rate and maximum shear strain rate,can be estimated by applying varied mathematical approaches.This study applied Akaike's Bayesian Information Criterion(ABIC)method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau.Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise.The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Tibet,indicating rotation of eastern Tibet material around the eastern Himalaya rather than whole extrusion along a fixed channel.Additionally,distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed.The northeast region,represented by the Longmenshan area,exhibited negative dilatational anomalies;while the southwest region,represented by the Jinsha River area north of 29°N,displayed positive dilatational anomalies.This indicates compression in the former and extension in the latter.Combined with deep geophysical observations,we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state,probably caused by the escape-drag effect of material.The presence of a large,low-viscosity region south of 29°N may not enable the entire escape of the crust,but instead result in a differential escape of the lower crust faster than the upper crust.展开更多
Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from p...Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs.展开更多
Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electr...Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electrolysis.Herein,we use the pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy activated by NiFe_(2)O_(4)(FeNi/NiFe_(2)O_(4)@NC)for efficiently increasing the performance of water and urea oxidation.Due to the tensile strain effect on FeNi/NiFe_(2)O_(4)@NC,it provides a favorable modulation on the electronic properties of the active center,thus enabling amazing OER(η_(100)=196 mV)and UOR(E_(10)=1.32 V)intrinsic activity.Besides,the carbon-coated layers can be used as armor to prevent FeNi alloy from being corroded by the electrolyte for enhancing the OER/UOR stability at large current density,showing high industrial practicability.This work thus provides a simple way to prepare high-efficiency catalyst for activating water and urea oxidation.展开更多
To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fer...To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production.展开更多
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a...For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.展开更多
LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni...LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni-rich LiNi_(x)Co_(y)Al_(z)O_(2)(x>0.8,x+y+z=1)cathode material,which is owing to the structural degradation and particles'intrinsic fracture.To tackle the problems,Li_(0.5)La_(2)Al_(0.5)O_(4)in situ coated and Mn compensating doped multilayer LiNi_(0.82)Co_(0.14)Al_(0.04)O_(2)was prepared.XRD refinement indicates that La-Mn co-modifying could realize appropriate Li/Ni disorder degree.Calculated results and in situ XRD patterns reveal that the LLAO coating layer could effectively restrain crack in secondary particles benefited from the suppressed internal strain.AFM further improves as NCA-LM2 has superior mechanical property.The SEM,TEM,XPS tests indicate that the cycled cathode with LLAO-Mn modification displays a more complete morphology and less side reaction with electrolyte.DEMS was used to further investigate cathode-electrolyte interface which was reflected by gas evolution.NCA-LM2 releases less CO_(2)than NCA-P indexing on a more stable surface.The modified material presents outstanding capacity retention of 96.2%after 100 cycles in the voltage range of 3.0-4.4 V at 1C,13%higher than that of the pristine and 80.8%at 1 C after 300 cycles.This excellent electrochemical performance could be attributed to the fact that the high chemically stable coating layer of Li_(0.5)La_(2)Al_(0.5)O_(4)(LLAO)could enhance the interface and the Mn doping layer could suppress the influence of the lattice mismatch and distortion.We believe that it can be a useful strategy for the modification of Ni-rich cathode material and other advanced functional material.展开更多
On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of t...On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of the Tibetan Plateau(i.e.,Qinghai-Tibet Plateau),encompassing a rhombic-shaped area that intersects the Qilian-Qaidam Basin,Alxa Block,Ordos Block,and South China Block.In this study,we analyzed the deep tectonic pattern of the Jishishan earthquake by incorporating data on the crustal thickness,velocity structure,global navigation satellite system(GNSS)strain field,and anisotropy.We discovered that the location of the earthquake was related to changes in the crustal structure.The results showed that the Jishishan M_(s)6.2 earthquake occurred in a unique position,with rapid changes in the crustal thickness,Vp/Vs,phase velocity,and S-wave velocity.The epicenter of the earthquake was situated at the transition zone between high and low velocities and was in proximity to a low-velocity region.Additionally,the source area is flanked by two high-velocity anomalies from the east and west.The principal compressive strain orientation near the Lajishan Fault is primarily in the NNE and NE directions,which align with the principal compressive stress direction in this region.In some areas of the Lajishan Fault,the principal compressive strain orientations show the NNW direction,consistent with the direction of the upper crustal fast-wave polarization from local earthquakes and the phase velocity azimuthal anisotropy.These features underscore the relationship between the occurrence of the Jishishan M_(s)6.2 earthquake and the deep inhomogeneous structure and deep tectonic characteristics.The NE margin of the Tibetan Plateau was thickened by crustal extension in the process of northeastward expansion,and the middle and lower crustal materials underwent structural deformation and may have been filled with salt-containing fluids during the extension process.The presence of this weak layer makes it easier for strong earthquakes to occur through the release of overlying rigid crustal stresses.However,it is unlikely that an earthquake of comparable or larger magnitude would occur in the short term(e.g.,in one year)at the Jishishan east margin fault.展开更多
The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER...The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER is a four-step,four-electron reaction,and its slow kinetics result in high overpotentials,posing a challenge.To address this issue,numerous strategies involving modified catalysts have been proposed and proven to be highly efficient.In these strategies,the introduction of strain has been widely reported because it is generally believed to effectively regulate the electronic structure of metal sites and alter the adsorption energy of catalyst surfaces with reaction intermediates.However,strain has many other effects that are not well known,making it an important yet unexplored area.Based on this,this review provides a detailed introduction to the various roles of strain in OER.To better explain these roles,the review also presents the definition of strain and elucidates the potential mechanisms of strain in OER based on the d-band center theory and adsorption volcano plot.Additionally,the review showcases various ways of introducing strain in OER through examples reported in the latest literature,aiming to provide a comprehensive perspective for the development of strain engineering.Finally,the review analyzes the appropriate proportion of strain introduction,compares compressive and tensile strain,and examines the impact of strain on stability.And the review offers prospects for future research directions in this emerging field.展开更多
The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the d...The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development.展开更多
Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rat...Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rate sensitivity and strain hardening index increase with increasing nanorubber content.Potential mechanisms are proposed based on numerical simulations using a unit cell model.An increase in the strain rate sensitivity with increasing nanorubber content results from the fact that the nanorubber becomes less incompressible at high strain,generating a higher hydro-static pressure.Adiabatic shear localization starts to occur in the epoxy under a strain rate of 22,000 s^(-1) when the strain exceeds 0.35.The presence of nanorubber in the epoxy reduces adiabatic shear localization by preventing it from propagating.展开更多
In the internal parts of the Zagros collision zone, several deformation phases have been superimposed. The early deformation phase caused the development of a penetrative foliation. The late-stage deformation phase wa...In the internal parts of the Zagros collision zone, several deformation phases have been superimposed. The early deformation phase caused the development of a penetrative foliation. The late-stage deformation phase was preferentially accommodated within shear zones and caused the generation of shear bands, implying a non-coaxial component of deformation, the end of this stage deformation was marked by the development of kink-bands. In the vicinity of Zagros suture zone, the kink angle increased from 40° to 60°, and the kink-bands was converted to chevron folds. In this region, the external(α) and internal(β) angular ratio is α/β ≠ 1 and kink angle increased, and deformation occurred with 10% to 30% volume loss. Farther from the suture zone in the east, α/β = 1;and total volume was constant or increased by 5% to 10%. Kink-bands kinematic analysis in the study area revealed this structures were sensitive to deformation conditions and components such that, with decreasing distance to the Zagros suture zone, shearing and rotation increased, a high kinematic vorticity dominated, and volume loss occurred during deformation.展开更多
Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel...Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel sheets combining high strength with good ductility.The results show that,for different cryorolling strains,the uniform elongation was greatly increased without sacrificing the strength after annealing.A yield strength of 607 MPa and a uniform elongation of 11.7%were obtained after annealing at a small cryorolling strain(ε=0.22),while annealing at a large cryorolling strain(ε=1.6)resulted in a yield strength of 990 MPa and a uniform elongation of 6.4%.X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),and electron backscattered diffraction(EBSD)were used to characterize the microstructure of the specimens and showed that the high strength could be attributed to strain hardening during cryorolling,with an additional contribution from grain refinement and the formation of dislocation walls.The high ductility could be attributed to annealing twins and micro-shear bands during stretching,which improved the strain hardening capacity.The results show that the synergistic effect of strength and ductility can be regulated through low-temperature short-time annealing with different cryorolling strains,which provides a new reference for the design of future thermo-mechanical processes.展开更多
The presence of two sublattices in hexagonal graphene brings two energetically degenerate extremes in the conduction and valence bands, which are identified by the valley quantum number. Recently, this valley degree o...The presence of two sublattices in hexagonal graphene brings two energetically degenerate extremes in the conduction and valence bands, which are identified by the valley quantum number. Recently, this valley degree of freedom has been suggested to encode and process information, which develops a new carbon-based electronics named graphene valleytronics. In this topical review, we present and discuss valley-related transport properties in bulk graphene monolayers,which are due to strain-induced pseudomagnetic fields and associated vector potential, sublattice-stagger potential, and the valley-Zeeman effect. These valley-related interactions can be utilized to obtain valley filtering, valley spatial separation, valley-resolved guiding modes, and valley-polarized collective modes such as edge or surface plasmons. The present challenges and the perspectives on graphene valleytronics are also provided in this review.展开更多
The frequency-dependent electrical properties and strain self-sensing behaviour of ultra-high performance concrete(UHPC)as cement-based stress/strain self-sensing(CBSS)smart materials were investigated in the frequenc...The frequency-dependent electrical properties and strain self-sensing behaviour of ultra-high performance concrete(UHPC)as cement-based stress/strain self-sensing(CBSS)smart materials were investigated in the frequency range from 100 Hz to 300 kHz.By using the electrical parameters of the equivalent electric circuit model,the quantitative relations of capacitance and conductance of CBSS with the measurement frequency were derived.The capacitance and the conductance exhibit power-law type dependence on the measurement frequency.The calculated capacitance values at frequencies beyond 2 kHz and conductance values are consistent with the experimental results.The sweep-frequency test and the fixed-frequency test were performed to examine effects of the excitation frequencies on strain self-sensing properties of CBSS.The fractional change in capacitance(FCC)and resistance(FCR)of CBSS are frequency-dependent in the frequency range from 100 Hz to the f_(B),but frequency-independent in the frequency range from the f_(B)to 300 kHz.The f_(A)and the f_(B)are 1.7-4.0 kHz and 11-78 kHz depending on the fiber dosages,respectively.FCC and FCR reach their maximum at the f_(A)and 100 Hz,respectively.The responses of capacitance and resistance of CBSS to strain show good repeatability during cyclic loading.As the fiber dosage increases,capacitance-based sensitivity to strain increases initially and then decreases at the f_(A),and resistance-based sensitivity to strain of CBSS increases with increasing fiber contents.展开更多
The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-un...The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-unique critical state of soils,because the distance between the compression line and critical state line charged by strain-rate effect is basically neglected.To fill this gap,a generalized spacing ratio of soils is defined in the elasto-viscoplastic framework,and a bounding surface visco-plasticity model is formulated and verified,which can consider the generalized spacing ratio.Specifically,the generalized spacing ratio of soils reflects the distance between the compression line and the critical state line of soils with time-dependent behaviors.Then,the generalized spacing ratio is introduced into an improved anisotropic bounding surface.A new expression of the visco-plastic multiplier is derived by solving the consistency equation of an anisotropic bounding surface.In the expression,a strain rate index is proposed to account for the strain-rate effect on visco-plastic strain increment,and a visco-plastic hardening modulus is derived to predict the visco-plastic response of soils in overconsolidation conditions.The model is then verified through constant strain rate tests and creep tests.Notably,it can capture the non-unique critical states of soils with time-dependent behaviors due to the generalized spacing ratio and the creep rupture of soils due to the visco-plastic multiplier that considers the stress ratio and visco-plastic strain rate.展开更多
In this study,pre-strain ranging from 0 to 0.12 was applied through uniaxial tension on high-strength low-alloy(HSLA)specimens with four kinds of grain size.Effect of pre-strain and grain size on me-chanical property ...In this study,pre-strain ranging from 0 to 0.12 was applied through uniaxial tension on high-strength low-alloy(HSLA)specimens with four kinds of grain size.Effect of pre-strain and grain size on me-chanical property was investigated through tensile tests.Microstructures of the pre-strained and tensile tested samples were analyzed,respectively.The 30.8°v-bending and following flattening,as well as Erichson cupping tests,were performed on the pre-strained samples.Results show the elongation ratio of grain and dislocation density increases with pre-strain.Yielding platform is removed when pre-strain is larger than 0.06 while yielding plateau period decreases with pre-strain less than 0.06 due to reduction of pinning effect.The 30.8°v-bending and the following flattening tests are successfully accomplished on all the pre-strained samples with different grain size.Decrease in grain size,along with increase in pre-strain,causes increase in strength and decrease in elongation rate as well as cupping value.Pre-strain causes very slight effect on bending ability,much less than that on mechanical property and cupping test value.Reciprocal impact of the pre-strain and grain size on HSLA steel deformability is inconspicuous.展开更多
文摘This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of experiment was used to arrange finite element analyses and experimental tests.Numerical and experimental tests were executed by changing rotary speed,feed rate and die angle.Taguchi design results show that increasing feed rate and decreasing rotary speed enhance Zener-Hollomon(Z)parameter and decrease average grain size,while die angle has no considerable effect.Increasing Z value reduces grain size and enhances flow stress of the processed samples,while the experiment with the highest Z value refines initial microstructure from 40 to 8μm and increases flow stress by 5 times.
文摘The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenite in microstructure was studied in an iso-stress condition. Hot compression tests were performed at temperatures of 800-1100~C and strain rates of 0.001-1 s-1. The flow stress was modeled by a hyperbolic sine constitutive equation, the corresponding constants and apparent activation energies were determined for the studied alloys. The constitutive equation and law of mixture were used to measure the contribution factor of each phase at any given strain. It is found that the contribution factor of ferrite exponentially declines as the Zener-HoUomon parameter (Z) increases. On the contrary, the austenite contribution polynomially increases with the increase of Z. At low Z values below 2.6. x 1015 (lnZ---35.5), a negative contribution factor is determined for austenite that is attributed to dynamic recrystallization. At high Z values, the contribution factor of austenite is about two orders of magnitude greater than that of ferrite, and therefore, austenite can accommodate more strain. Microstructural characterization via electron back-scattered diffraction (EBSD) confirms the mechanical results and shows that austenite recrystallization is possible only at high temperature and low strain rate.
基金the National Natural Science Foundation of China (Nos.51771082,51971009,52175410,51801076)the Six Talent Peaks Project in Jiangsu Province,China (No.2019-XCL-113)+2 种基金Zhenjiang Science & Technology Program,China (No.GY2020001)Project of Faculty of Agricultural Equipment of Jiangsu University,China (No.NZXB20200101)the US Department of Energy,Office of Science and Office of Basic Energy Science (No.DE-AC02-06CH11357) for providing the Advanced Photon Source。
文摘The mechanisms responsible for deformation behavior in Nb/NiTi composite during pre-straining were investigated systematically using in-situ synchrotron X-ray diffraction, transmission electron microscopy and tensile test. It is shown that upon loading, the composite experiences elastic elongation and slight plastic deformation of B19′,B2 and β-Nb phases, together with the forward stress-induced martensitic(SIM) transformation from B2 to B19′. Upon unloading, the deformation mechanisms of the composite mainly involve elastic recovery of B19′, B2 and β-Nb phases,compression deformation of β-Nb phase and incomplete B19′→B2 reverse SIM transformation. In the tensile loading-unloading procedure, besides the inherent elastic deformation and SIM transformation, the(001) compound twins in B19′ martensite can also be conducive to the elastic deformation occurring in B19′-phase of the composite.Therefore, this composite can exhibit a large recoverable strain after unloading owing to the elastic deformation, and the partially reversible and consecutive SIM transformation together with the(001) compound twins.
基金supported by grants from the Ministry of Science and Technology(Grant Nos.2021FY100101,2019QZKK0901)the National Natural Science Foundation of China(Grant Nos.41941016,42230312,42020104007)China Geological Survey(Grant No.DD20221630).
文摘The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks.If the discrete observed velocity field is obtained,the velocity related fields,such as dilatation rate and maximum shear strain rate,can be estimated by applying varied mathematical approaches.This study applied Akaike's Bayesian Information Criterion(ABIC)method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau.Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise.The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Tibet,indicating rotation of eastern Tibet material around the eastern Himalaya rather than whole extrusion along a fixed channel.Additionally,distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed.The northeast region,represented by the Longmenshan area,exhibited negative dilatational anomalies;while the southwest region,represented by the Jinsha River area north of 29°N,displayed positive dilatational anomalies.This indicates compression in the former and extension in the latter.Combined with deep geophysical observations,we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state,probably caused by the escape-drag effect of material.The presence of a large,low-viscosity region south of 29°N may not enable the entire escape of the crust,but instead result in a differential escape of the lower crust faster than the upper crust.
基金the supports from the National Natural Science Foundation of China(Nos.62264012,62164009)Inner Mongolia Higher Education Research Project(No.NJZZ22343)+1 种基金Inner Mongolia University Research Foundation for Advanced Talents in 2021(No.10000-21311201/005)the Inner Mongolia Autonomous Region for Advanced Talents in 2020(No.12000-12102628)。
文摘Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs.
基金supported by the National Natural Science Foundation of China(21872040,22162004)the Excellent Scholars and Innovation Team of Guangxi Universities,the Innovation Project of Guangxi Graduate Education(YCBZ2022038)the High-performance Computing Platform of Guangxi University.
文摘Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electrolysis.Herein,we use the pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy activated by NiFe_(2)O_(4)(FeNi/NiFe_(2)O_(4)@NC)for efficiently increasing the performance of water and urea oxidation.Due to the tensile strain effect on FeNi/NiFe_(2)O_(4)@NC,it provides a favorable modulation on the electronic properties of the active center,thus enabling amazing OER(η_(100)=196 mV)and UOR(E_(10)=1.32 V)intrinsic activity.Besides,the carbon-coated layers can be used as armor to prevent FeNi alloy from being corroded by the electrolyte for enhancing the OER/UOR stability at large current density,showing high industrial practicability.This work thus provides a simple way to prepare high-efficiency catalyst for activating water and urea oxidation.
基金supported by Special key project of technological innovation and application development in Yongchuan District,Chongqing(2021yc-cxfz20002)the special funds of central government for guiding local science and technology developmentthe funds for the platform projects of professional technology innovation(CSTC2018ZYCXPT0006).
文摘To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production.
基金Supported by Youth Elite Project of CNNC and Modular HTGR Super-critical Power Generation Technology Collaborative Project between CNNC and Tsinghua University Project of China(Grant No.ZHJTIZYFGWD20201).
文摘For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.
基金supported in part by the High Performance Computing Center of Central South Universitythe financial support from the Government of Chongzuo,Guangxi Zhuang Autonomous Region(Fund No.FA2020011FA20210713)
文摘LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni-rich LiNi_(x)Co_(y)Al_(z)O_(2)(x>0.8,x+y+z=1)cathode material,which is owing to the structural degradation and particles'intrinsic fracture.To tackle the problems,Li_(0.5)La_(2)Al_(0.5)O_(4)in situ coated and Mn compensating doped multilayer LiNi_(0.82)Co_(0.14)Al_(0.04)O_(2)was prepared.XRD refinement indicates that La-Mn co-modifying could realize appropriate Li/Ni disorder degree.Calculated results and in situ XRD patterns reveal that the LLAO coating layer could effectively restrain crack in secondary particles benefited from the suppressed internal strain.AFM further improves as NCA-LM2 has superior mechanical property.The SEM,TEM,XPS tests indicate that the cycled cathode with LLAO-Mn modification displays a more complete morphology and less side reaction with electrolyte.DEMS was used to further investigate cathode-electrolyte interface which was reflected by gas evolution.NCA-LM2 releases less CO_(2)than NCA-P indexing on a more stable surface.The modified material presents outstanding capacity retention of 96.2%after 100 cycles in the voltage range of 3.0-4.4 V at 1C,13%higher than that of the pristine and 80.8%at 1 C after 300 cycles.This excellent electrochemical performance could be attributed to the fact that the high chemically stable coating layer of Li_(0.5)La_(2)Al_(0.5)O_(4)(LLAO)could enhance the interface and the Mn doping layer could suppress the influence of the lattice mismatch and distortion.We believe that it can be a useful strategy for the modification of Ni-rich cathode material and other advanced functional material.
基金the National Natural Science Foundation of China(Project Nos.41804046 and 41974050)the Special Fund of the Key Laboratory of Earthquake Prediction,China Earthquake Administration(No.CEAIEF2022010100).
文摘On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of the Tibetan Plateau(i.e.,Qinghai-Tibet Plateau),encompassing a rhombic-shaped area that intersects the Qilian-Qaidam Basin,Alxa Block,Ordos Block,and South China Block.In this study,we analyzed the deep tectonic pattern of the Jishishan earthquake by incorporating data on the crustal thickness,velocity structure,global navigation satellite system(GNSS)strain field,and anisotropy.We discovered that the location of the earthquake was related to changes in the crustal structure.The results showed that the Jishishan M_(s)6.2 earthquake occurred in a unique position,with rapid changes in the crustal thickness,Vp/Vs,phase velocity,and S-wave velocity.The epicenter of the earthquake was situated at the transition zone between high and low velocities and was in proximity to a low-velocity region.Additionally,the source area is flanked by two high-velocity anomalies from the east and west.The principal compressive strain orientation near the Lajishan Fault is primarily in the NNE and NE directions,which align with the principal compressive stress direction in this region.In some areas of the Lajishan Fault,the principal compressive strain orientations show the NNW direction,consistent with the direction of the upper crustal fast-wave polarization from local earthquakes and the phase velocity azimuthal anisotropy.These features underscore the relationship between the occurrence of the Jishishan M_(s)6.2 earthquake and the deep inhomogeneous structure and deep tectonic characteristics.The NE margin of the Tibetan Plateau was thickened by crustal extension in the process of northeastward expansion,and the middle and lower crustal materials underwent structural deformation and may have been filled with salt-containing fluids during the extension process.The presence of this weak layer makes it easier for strong earthquakes to occur through the release of overlying rigid crustal stresses.However,it is unlikely that an earthquake of comparable or larger magnitude would occur in the short term(e.g.,in one year)at the Jishishan east margin fault.
基金financially supported by the National Natural Science Foundation of China(52071072)the Fundamental Research Funds for the Central Universities(2023GFZD03)+4 种基金the Natural Science Foundation-Steel,the Iron Foundation of Hebei Province(E2022501030)the Key Research and Development Plan of Qinhuangdao City(202302B013)the Liaoning Applied Basic Research Program(2023JH2/101300011)the Basic scientific research project of Liaoning Province Department of Education(LJKZZ20220024)the Shenyang Science and Technology Project(23-407-3-13)。
文摘The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER is a four-step,four-electron reaction,and its slow kinetics result in high overpotentials,posing a challenge.To address this issue,numerous strategies involving modified catalysts have been proposed and proven to be highly efficient.In these strategies,the introduction of strain has been widely reported because it is generally believed to effectively regulate the electronic structure of metal sites and alter the adsorption energy of catalyst surfaces with reaction intermediates.However,strain has many other effects that are not well known,making it an important yet unexplored area.Based on this,this review provides a detailed introduction to the various roles of strain in OER.To better explain these roles,the review also presents the definition of strain and elucidates the potential mechanisms of strain in OER based on the d-band center theory and adsorption volcano plot.Additionally,the review showcases various ways of introducing strain in OER through examples reported in the latest literature,aiming to provide a comprehensive perspective for the development of strain engineering.Finally,the review analyzes the appropriate proportion of strain introduction,compares compressive and tensile strain,and examines the impact of strain on stability.And the review offers prospects for future research directions in this emerging field.
基金supported by the Qingdao Natural Science Foundation(No.23-2-1-54-zyyd-jch)the National Natural Science Foundation of China(Nos.42076217,41976074)+1 种基金the Laoshan Laboratory(No.LSKJ202203506)the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education,Tongji University(No.KLE-TJGE-G2202).
文摘The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development.
基金supported by the Key Research and Development Plan of Shaanxi Province (2023-GHZD-12)the Opening Fund of State Key Laboratory for Strength and Vibration of Mechanical Structures (SVL2021-KF-12)+1 种基金Fundamental Research Funds for the Central Universities (G2020KY05112)the 111 Project (BP0719007)
文摘Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rate sensitivity and strain hardening index increase with increasing nanorubber content.Potential mechanisms are proposed based on numerical simulations using a unit cell model.An increase in the strain rate sensitivity with increasing nanorubber content results from the fact that the nanorubber becomes less incompressible at high strain,generating a higher hydro-static pressure.Adiabatic shear localization starts to occur in the epoxy under a strain rate of 22,000 s^(-1) when the strain exceeds 0.35.The presence of nanorubber in the epoxy reduces adiabatic shear localization by preventing it from propagating.
文摘In the internal parts of the Zagros collision zone, several deformation phases have been superimposed. The early deformation phase caused the development of a penetrative foliation. The late-stage deformation phase was preferentially accommodated within shear zones and caused the generation of shear bands, implying a non-coaxial component of deformation, the end of this stage deformation was marked by the development of kink-bands. In the vicinity of Zagros suture zone, the kink angle increased from 40° to 60°, and the kink-bands was converted to chevron folds. In this region, the external(α) and internal(β) angular ratio is α/β ≠ 1 and kink angle increased, and deformation occurred with 10% to 30% volume loss. Farther from the suture zone in the east, α/β = 1;and total volume was constant or increased by 5% to 10%. Kink-bands kinematic analysis in the study area revealed this structures were sensitive to deformation conditions and components such that, with decreasing distance to the Zagros suture zone, shearing and rotation increased, a high kinematic vorticity dominated, and volume loss occurred during deformation.
基金the financial support from the High-Tech Industry Technology Innovation Leading Plan of Hunan Province,China(2020GK2032)the Innovation Driven Program of Central South University(CSU)(2019CX006)the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at CSU。
文摘Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel sheets combining high strength with good ductility.The results show that,for different cryorolling strains,the uniform elongation was greatly increased without sacrificing the strength after annealing.A yield strength of 607 MPa and a uniform elongation of 11.7%were obtained after annealing at a small cryorolling strain(ε=0.22),while annealing at a large cryorolling strain(ε=1.6)resulted in a yield strength of 990 MPa and a uniform elongation of 6.4%.X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),and electron backscattered diffraction(EBSD)were used to characterize the microstructure of the specimens and showed that the high strength could be attributed to strain hardening during cryorolling,with an additional contribution from grain refinement and the formation of dislocation walls.The high ductility could be attributed to annealing twins and micro-shear bands during stretching,which improved the strain hardening capacity.The results show that the synergistic effect of strength and ductility can be regulated through low-temperature short-time annealing with different cryorolling strains,which provides a new reference for the design of future thermo-mechanical processes.
基金supported by the National Natural Science Foundation of China (Grant Nos.11774314 and 12274370)Scientific Research Start-up Fund of Zhejiang Normal University (Grant No.YS304222903)。
文摘The presence of two sublattices in hexagonal graphene brings two energetically degenerate extremes in the conduction and valence bands, which are identified by the valley quantum number. Recently, this valley degree of freedom has been suggested to encode and process information, which develops a new carbon-based electronics named graphene valleytronics. In this topical review, we present and discuss valley-related transport properties in bulk graphene monolayers,which are due to strain-induced pseudomagnetic fields and associated vector potential, sublattice-stagger potential, and the valley-Zeeman effect. These valley-related interactions can be utilized to obtain valley filtering, valley spatial separation, valley-resolved guiding modes, and valley-polarized collective modes such as edge or surface plasmons. The present challenges and the perspectives on graphene valleytronics are also provided in this review.
文摘The frequency-dependent electrical properties and strain self-sensing behaviour of ultra-high performance concrete(UHPC)as cement-based stress/strain self-sensing(CBSS)smart materials were investigated in the frequency range from 100 Hz to 300 kHz.By using the electrical parameters of the equivalent electric circuit model,the quantitative relations of capacitance and conductance of CBSS with the measurement frequency were derived.The capacitance and the conductance exhibit power-law type dependence on the measurement frequency.The calculated capacitance values at frequencies beyond 2 kHz and conductance values are consistent with the experimental results.The sweep-frequency test and the fixed-frequency test were performed to examine effects of the excitation frequencies on strain self-sensing properties of CBSS.The fractional change in capacitance(FCC)and resistance(FCR)of CBSS are frequency-dependent in the frequency range from 100 Hz to the f_(B),but frequency-independent in the frequency range from the f_(B)to 300 kHz.The f_(A)and the f_(B)are 1.7-4.0 kHz and 11-78 kHz depending on the fiber dosages,respectively.FCC and FCR reach their maximum at the f_(A)and 100 Hz,respectively.The responses of capacitance and resistance of CBSS to strain show good repeatability during cyclic loading.As the fiber dosage increases,capacitance-based sensitivity to strain increases initially and then decreases at the f_(A),and resistance-based sensitivity to strain of CBSS increases with increasing fiber contents.
基金the financial support provided by the National Key R&D Program of China(Grant No.2023YFC3008400)National Natural Science Foundation of China(Grant No.42102317)Qin Chuangyuan“Scientist+Engineer”Team Construction Project of Shaanxi Province in China(Grant No.2023KXJ-178).
文摘The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-unique critical state of soils,because the distance between the compression line and critical state line charged by strain-rate effect is basically neglected.To fill this gap,a generalized spacing ratio of soils is defined in the elasto-viscoplastic framework,and a bounding surface visco-plasticity model is formulated and verified,which can consider the generalized spacing ratio.Specifically,the generalized spacing ratio of soils reflects the distance between the compression line and the critical state line of soils with time-dependent behaviors.Then,the generalized spacing ratio is introduced into an improved anisotropic bounding surface.A new expression of the visco-plastic multiplier is derived by solving the consistency equation of an anisotropic bounding surface.In the expression,a strain rate index is proposed to account for the strain-rate effect on visco-plastic strain increment,and a visco-plastic hardening modulus is derived to predict the visco-plastic response of soils in overconsolidation conditions.The model is then verified through constant strain rate tests and creep tests.Notably,it can capture the non-unique critical states of soils with time-dependent behaviors due to the generalized spacing ratio and the creep rupture of soils due to the visco-plastic multiplier that considers the stress ratio and visco-plastic strain rate.
基金Funded by Natural Science Foundation of Guangxi Zhuang Autonomous Region(No.2020JJA160034)the Basic Ability Improvement of Middle and Young Teachers in Guangxi Universities Foundation(No.2020KY21018)。
文摘In this study,pre-strain ranging from 0 to 0.12 was applied through uniaxial tension on high-strength low-alloy(HSLA)specimens with four kinds of grain size.Effect of pre-strain and grain size on me-chanical property was investigated through tensile tests.Microstructures of the pre-strained and tensile tested samples were analyzed,respectively.The 30.8°v-bending and following flattening,as well as Erichson cupping tests,were performed on the pre-strained samples.Results show the elongation ratio of grain and dislocation density increases with pre-strain.Yielding platform is removed when pre-strain is larger than 0.06 while yielding plateau period decreases with pre-strain less than 0.06 due to reduction of pinning effect.The 30.8°v-bending and the following flattening tests are successfully accomplished on all the pre-strained samples with different grain size.Decrease in grain size,along with increase in pre-strain,causes increase in strength and decrease in elongation rate as well as cupping value.Pre-strain causes very slight effect on bending ability,much less than that on mechanical property and cupping test value.Reciprocal impact of the pre-strain and grain size on HSLA steel deformability is inconspicuous.