期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Floor heave characteristics and control technology of the roadway driven in deep inclined-strata 被引量:7
1
作者 Wang Meng Guo Guanlong +2 位作者 Wang Xiangyu Guo Yu Dao Vietdoan 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期267-273,共7页
Based on in-mine instrumentation and theoretical analysis of the unsymmetrical large-deformation that occurred in the roadway after excavation,Differential Floor Heave(DFH)was found to be the main reason for roadway f... Based on in-mine instrumentation and theoretical analysis of the unsymmetrical large-deformation that occurred in the roadway after excavation,Differential Floor Heave(DFH)was found to be the main reason for roadway failure.It needs to be pointed out that the specific roadway was driven in inclined rock strata.In addition,the factors that contribute to the occurrence of DFH are discussed in detail.It is believed that DFH is triggered by the unsymmetrical stress distribution in the floor and the different rock types encountered near the two floor corners.Hence,DFH control should be focused on the left floor corner where shearing failure occurs initially and the left floor surface where tensile failure is more severe.The proposed DFH control strategies include unsymmetrical grouting for the whole roadway,re-design of the roof and ribs support,reinforcement of the weak zones,and release of the concentrated stress in the earlier stage.Meanwhile,it is recommended that in the later stage,both bolts and cable bolts with higher strength and the backfilling technique using the coal measure rocks and concrete should be employed in the reversed-arch floor.The field instrumentation results,after using the proposed control strategies,indicate that large deformation in a DFH roadway has been successfully controlled. 展开更多
关键词 Deep roadway Inclined strata Differential Floor Heave (DFH)Unsymmetrical deformation Two stage control strategies
下载PDF
Rock Pressure on Tunnel with Shallow Depth in Geologically Inclined Bedding Strata 被引量:1
2
作者 周晓军 李泽龙 +1 位作者 杨昌宇 高扬 《Journal of Southwest Jiaotong University(English Edition)》 2006年第1期52-62,共11页
The method to calculate rock pressure to which the lining structure of tunnel with shallow depth is subjected in geologically inclined bedding strata is analyzed and put forward. Both the inclination angle of bedding ... The method to calculate rock pressure to which the lining structure of tunnel with shallow depth is subjected in geologically inclined bedding strata is analyzed and put forward. Both the inclination angle of bedding strata as well as the internal friction angle of bedding plane and its cohesion all exert an influence upon the magnitude of the asymmetric rock pressure applied to tunnel. The feature that rock pressure applied to tunnel structure varies with the incUnation angle of bedding strata is discussed, At last, the safety factor, which is utilized to evaluate the working state of tunnel lining structure, is calculated for both symmetric and asymmetric lining structures. The calculation results elucidate that the asymmetric tunnel structure can be more superior to bear rock pressure in comparison with the symmetric one and should be adopted in engineering as far as possible. 展开更多
关键词 Rock pressure Tunnel lining structure Inclined bedding strata Cohesion of bedding Internal fi'iction angle Safety oftunnel structure
下载PDF
Stability of roof structure and its control in steeply inclined coal seams 被引量:21
3
作者 Li Xiaomeng Wang Zhaohui Zhang Jinwang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期359-364,共6页
To improve the effectiveness of control of surrounding rock and the stability of supports on longwall topcoal caving faces in steeply inclined coal seams, the stability of the roof structure and hydraulic supports was... To improve the effectiveness of control of surrounding rock and the stability of supports on longwall topcoal caving faces in steeply inclined coal seams, the stability of the roof structure and hydraulic supports was studied with physical simulation and theoretical analysis. The results show that roof strata in the vicinity of the tail gate subside extensively with small cutting height, while roof subsidence near the main gate is relatively assuasive. With increase of the mining space, the caving angle of the roof strata above the main gate increases. The characteristics of the vertical and horizontal displacement of the roof strata demonstrate that caved blocks rotate around the lower hinged point of the roof structure, which may lead to sliding instability. Large dip angle of the coal seam makes sliding instability of the roof structure easier.A three-hinged arch can be easily formed above both the tail and main gates in steeply inclined coal seams. With the growth in the dip angle, subsidence of the arch foot formed above the main gate decreases significantly, which reduces the probability of the roof structure becoming unstable as a result of large deformation, while the potential of the roof structure's sliding instability above the tail gate increases dramatically. 展开更多
关键词 Steeply inclined coal seam Inclined masonry structure Overlying strata Structure instability
下载PDF
Face stability analysis of a shield tunnel excavated along inclined strata 被引量:1
4
作者 Wei Li Chengping Zhang +2 位作者 Shiqin Tu Wen Chen Mengshuo Ma 《Underground Space》 SCIE EI CSCD 2023年第6期183-204,共22页
The horizontally layered or even inclined strata are often encountered in practical shield tunneling.The influence of inclined strata on face stability of shield tunnels is not fully investigated by the existing studi... The horizontally layered or even inclined strata are often encountered in practical shield tunneling.The influence of inclined strata on face stability of shield tunnels is not fully investigated by the existing studies.This paper adopts both theoretical analysis and numerical simulation to carry out research on face stability in inclined strata.The spatial discretization technique is adopted to construct a threedimensional(3D)kinematic failure mechanism considering intersection between inclined soil interface and tunnel face.An analytical solution for critical support pressure is obtained.Besides,the critical support pressure and 3D kinematic mechanism are compared with numerical results to verify accuracy and effectiveness of analytical model.The influences of dip and position of inclined strata on face stability are thoroughly studied.The proposed failure mechanism can serve as a reference for face stability analysis in inclined strata. 展开更多
关键词 Tunnel face stability Inclined strata Limit analysis Critical support pressure 3D failure mechanism
原文传递
Thermography analyses of rock fracture due to excavation and overloading for tunnel in 30° inclined strata 被引量:3
5
作者 SUN XiaoMing XU HuiChen +2 位作者 HE ManChao GONG WeiLi CHEN Feng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第6期911-923,共13页
Large-scale physical model test of 30°inclined strata was conducted to investigate the damage mechanisms during the excavation and overloading using infrared detection.The experiment results were presented with t... Large-scale physical model test of 30°inclined strata was conducted to investigate the damage mechanisms during the excavation and overloading using infrared detection.The experiment results were presented with thermal images which were divided into three stages including a full face excavation stage,a staged excavation stage,and an overloading stage.The obtained results were compared with the previously reported results from horizontal,45?,60?,and vertical strata models.Infrared temperature(IRT)for 30°inclined strata model descended with multiple fluctuations during the full-face excavation.For the staged excavation,the excavation damage zone(EDZ)showed enhanced faulting-like strips as compared in the 45?,60?,and vertical models,indicating the intensified stress redistribution occurred in the adjacent rock mass.In contrast,EDZ for the horizontal strata existed in a plastic-formed manner.During the overloading,abnormal features in the thermal images were observed preceding the coalescence of the propagating cracks.The ultimate failure of the model was due primarily to the floor heave and the roof fall. 展开更多
关键词 deep tunnel inclined strata failure process large-scale physical model infrared thermal imaging technology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部