A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visu...A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visually reflect the failure modes of rock samples under different inclination angles β of structural plane. The stiffness of rock sample before peak strength changes in the compressive procedure. With the increase of β, the compressive strength σc of rock sample decreases firstly and then increases; when β is in the range of 20°-30° and 80°-90°, σc has the largest sensitivity to r; while β falls in the range of 30°-70°, σc varies little. When φj〈β〈90° ( φj is friction angle of structure plane), the results obtained from numerical simulation and theoretical analysis are in almost the same values; while β〈 φj or β=90°, they are in great different values. The results obtained from theoretical analysis are obvious larger than those from numerical simulation; and the results from numerical simulation can reflect the difference of compressive strength of rock samples for the two situations of β≥φj and β=90°, which is in more accordance with the real situation.展开更多
This paper presents an overview of experimental investigations conducted at China University of Mining and Technology Beijing(CUMTB) on roadway excavation using large-scale geomechanical model tests.The simulated sedi...This paper presents an overview of experimental investigations conducted at China University of Mining and Technology Beijing(CUMTB) on roadway excavation using large-scale geomechanical model tests.The simulated sedimentary rocks are composed by alternating layers of sandstone, mudstone and coal seam inclined at varied angles with respect to the horizontal including 0°, 45°, 60°, and 90°. During the excavation, infrared thermography was employed to detect the thermal response of the surrounding rocks under excavation. The obtained raw thermograms were processed using denoising algorithm, data reduction procedure and Fourier analysis. The infrared temperature(IRT) characterizes the overall rock response; the processed thermal images represent the structural behavior, and the Fourier spectrum describes damage development in the frequency domain. Deeper understanding was achieved by the comparative analyses of excavation in differently inclined rock masses using the image features of IRTs, thermal images and Fourier spectra.展开更多
Stress arch is a common phenomenon occurring in continuous materials and has also l:een proved to have great influences on the self-stabilization of soils or rock masses after excavation. In this paper, based on UDEC...Stress arch is a common phenomenon occurring in continuous materials and has also l:een proved to have great influences on the self-stabilization of soils or rock masses after excavation. In this paper, based on UDEC simulation, stress redistribution after excavation is investigated for a kind of special discontinuous material, i.e. blocky stratified rock mass. A layered stress arch system is observed with each stress arch lying over another. This special phenomenon is defined herein as "stress arch bunch". Effects of dip angle of bedding plane, lateral pressure and joint offset on this stress arch bunch are studied. Its formation mechanism is also discussed based on voussoir beam theory.展开更多
In order to understand failure mechanisms of the tunnel excavated in the stratified rock masses in deep mine, the physical modeling experiment by using the large-scale model was carried out. The field case simulated i...In order to understand failure mechanisms of the tunnel excavated in the stratified rock masses in deep mine, the physical modeling experiment by using the large-scale model was carried out. The field case simulated in the experiment is a main connection tunnel located at depth of 1000 m in Qishan coal mine,Xuzhou mining district. Tunnel deformation was monitored by using strain gauges and a video camera simultaneously. Crack initiation and propagation process during the test were analyzed based on image analysis of the captured video photographs. At the same time, deformation process of the key monitoring points around the tunnel section is given by the monitored strain plots. Under the increasing external loads, crack initiation occurs firstly on the left wall of the tunnel, then on the immediate roof.Complete failure of the tunnel occurs as a result of the slippage of the rock layers along the interfaces.展开更多
In order to capture the mechanism of roadway instability in deep mines, a new approach of Physically Finite Elemental Slab Assemblage (PFESA) is proposed in order to construct a large-scale physical model simulating t...In order to capture the mechanism of roadway instability in deep mines, a new approach of Physically Finite Elemental Slab Assemblage (PFESA) is proposed in order to construct a large-scale physical model simulating the geologically horizontal strata. We carried out physical modeling on the deformation and failure processes of roadways subjected to a plane loading scheme. Our laboratory tests were based on work which incorporated infrared (IR) detection, IR radiation temperature (IRT) statistics, image feature extraction and 2D Fourier transformation, from resulting thermographies. The IRT characterizes the mechanical responses from the roadway after loading with two stages, i.e., IRT evolving at higher levels corresponded to shallow mining (≤500 m) during which the roadway deformed gradually (referred to as the "steady deformation stage"); IRT evolving in a quasi-cyclical manner with multiple peaks corresponded to deep mining (800–2600 m), in which the failure mode for the roadway are dominated by breakage and collapse (called the "unsteady deformation stage"). The IR images and 2D Fourier spectra illustrate detailed information in terms of initiation, nucleation and coalescence of the damage to rock masses and the eventual failure of roadways subject to external loading.展开更多
基金Project (50099620) supported by the National Natural Science Foundation of China
文摘A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visually reflect the failure modes of rock samples under different inclination angles β of structural plane. The stiffness of rock sample before peak strength changes in the compressive procedure. With the increase of β, the compressive strength σc of rock sample decreases firstly and then increases; when β is in the range of 20°-30° and 80°-90°, σc has the largest sensitivity to r; while β falls in the range of 30°-70°, σc varies little. When φj〈β〈90° ( φj is friction angle of structure plane), the results obtained from numerical simulation and theoretical analysis are in almost the same values; while β〈 φj or β=90°, they are in great different values. The results obtained from theoretical analysis are obvious larger than those from numerical simulation; and the results from numerical simulation can reflect the difference of compressive strength of rock samples for the two situations of β≥φj and β=90°, which is in more accordance with the real situation.
基金provided by the Special Funds for the Major State Basic Research Project(No.2006CB202200)the Innovative Team Development Project of the state Educational Ministry of China(No.IRT0656)
文摘This paper presents an overview of experimental investigations conducted at China University of Mining and Technology Beijing(CUMTB) on roadway excavation using large-scale geomechanical model tests.The simulated sedimentary rocks are composed by alternating layers of sandstone, mudstone and coal seam inclined at varied angles with respect to the horizontal including 0°, 45°, 60°, and 90°. During the excavation, infrared thermography was employed to detect the thermal response of the surrounding rocks under excavation. The obtained raw thermograms were processed using denoising algorithm, data reduction procedure and Fourier analysis. The infrared temperature(IRT) characterizes the overall rock response; the processed thermal images represent the structural behavior, and the Fourier spectrum describes damage development in the frequency domain. Deeper understanding was achieved by the comparative analyses of excavation in differently inclined rock masses using the image features of IRTs, thermal images and Fourier spectra.
基金Supported by the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology (SKLGDUEK0912)
文摘Stress arch is a common phenomenon occurring in continuous materials and has also l:een proved to have great influences on the self-stabilization of soils or rock masses after excavation. In this paper, based on UDEC simulation, stress redistribution after excavation is investigated for a kind of special discontinuous material, i.e. blocky stratified rock mass. A layered stress arch system is observed with each stress arch lying over another. This special phenomenon is defined herein as "stress arch bunch". Effects of dip angle of bedding plane, lateral pressure and joint offset on this stress arch bunch are studied. Its formation mechanism is also discussed based on voussoir beam theory.
文摘In order to understand failure mechanisms of the tunnel excavated in the stratified rock masses in deep mine, the physical modeling experiment by using the large-scale model was carried out. The field case simulated in the experiment is a main connection tunnel located at depth of 1000 m in Qishan coal mine,Xuzhou mining district. Tunnel deformation was monitored by using strain gauges and a video camera simultaneously. Crack initiation and propagation process during the test were analyzed based on image analysis of the captured video photographs. At the same time, deformation process of the key monitoring points around the tunnel section is given by the monitored strain plots. Under the increasing external loads, crack initiation occurs firstly on the left wall of the tunnel, then on the immediate roof.Complete failure of the tunnel occurs as a result of the slippage of the rock layers along the interfaces.
基金Projects 2006CB202200 supported by the Special Funds for the Major State Basic Research ProjectIRT0656 by the Innovative Team Development Project of the State Educational Ministry of China
文摘In order to capture the mechanism of roadway instability in deep mines, a new approach of Physically Finite Elemental Slab Assemblage (PFESA) is proposed in order to construct a large-scale physical model simulating the geologically horizontal strata. We carried out physical modeling on the deformation and failure processes of roadways subjected to a plane loading scheme. Our laboratory tests were based on work which incorporated infrared (IR) detection, IR radiation temperature (IRT) statistics, image feature extraction and 2D Fourier transformation, from resulting thermographies. The IRT characterizes the mechanical responses from the roadway after loading with two stages, i.e., IRT evolving at higher levels corresponded to shallow mining (≤500 m) during which the roadway deformed gradually (referred to as the "steady deformation stage"); IRT evolving in a quasi-cyclical manner with multiple peaks corresponded to deep mining (800–2600 m), in which the failure mode for the roadway are dominated by breakage and collapse (called the "unsteady deformation stage"). The IR images and 2D Fourier spectra illustrate detailed information in terms of initiation, nucleation and coalescence of the damage to rock masses and the eventual failure of roadways subject to external loading.