期刊文献+
共找到158篇文章
< 1 2 8 >
每页显示 20 50 100
Observation-based Estimation of Aerosol-induced Reduction of Planetary Boundary Layer Height 被引量:9
1
作者 Jun ZOU Jianning SUN +3 位作者 Aijun DING Minghuai WANG Weidong GUO Congbin FU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第9期1057-1068,共12页
Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetar... Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height (PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System (SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2 for downward shortwave radiation (DSR) and a mean increase of 19.2 W m-2 for downward longwave radiation (DLR), as well as a mean decrease of 9.6 W m-2 for the surface sensible heat flux (SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter (PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5 column mass concentrations, the SHF under clean atmospheric conditions (same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5 reaches 200 mg m-2, the decrease in the PBLH at 1600 LST (local standard time) is about 450 m. 展开更多
关键词 AEROSOL RADIATION atmospheric stability surface sensible heat flux planetary boundary layer height
下载PDF
Numerical Study of Boundary Layer Structure and Rainfall after Landfall of Typhoon Fitow(2013): Sensitivity to Planetary Boundary Layer Parameterization 被引量:4
2
作者 Meiying DONG Chunxiao JI +1 位作者 Feng CHEN Yuqing WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第4期431-450,共20页
The boundary layer structure and related heavy rainfall of Typhoon Fitow(2013), which made landfall in Zhejiang Province, China, are studied using the Advanced Research version of the Weather Research and Forecasting ... The boundary layer structure and related heavy rainfall of Typhoon Fitow(2013), which made landfall in Zhejiang Province, China, are studied using the Advanced Research version of the Weather Research and Forecasting model, with a focus on the sensitivity of the simulation to the planetary boundary layer parameterization. Two groups of experiments—one with the same surface layer scheme and including the Yonsei University(YSU), Mellor–Yamada–Nakanishi–Niino Level 2.5,and Bougeault and Lacarrere schemes; and the other with different surface layer schemes and including the Mellor–Yamada–Janjic′ and Quasi-Normal Scale Elimination schemes—are investigated. For the convenience of comparative analysis, the simulation with the YSU scheme is chosen as the control run because this scheme successfully reproduces the track, intensity and rainfall as a whole. The maximum deviations in the peak tangential and peak radial winds may account for 11% and 33%of those produced in the control run, respectively. Further diagnosis indicates that the vertical diffusivity is much larger in the first group, resulting in weaker vertical shear of the tangential and radial winds in the boundary layer and a deeper inflow layer therein. The precipitation discrepancies are related to the simulated track deflection and the differences in the simulated low-level convergent flow among all tests. Furthermore, the first group more efficiently transfers moisture and energy and produces a stronger ascending motion than the second, contributing to a deeper moist layer, stronger convection and greater precipitation. 展开更多
关键词 planetary boundary layer PARAMETERIZATION landfalling TYPHOON boundary layer structure RAINFALL
下载PDF
VARIATION CHARACTERISTICS OF THE PLANETARY BOUNDARY LAYER HEIGHT AND ITS RELATIONSHIP WITH PM2.5 CONCENTRATION OVER CHINA 被引量:5
3
作者 WANG Yin-jun XU Xiang-de +1 位作者 ZHAO Yang WANG Min-zhong 《Journal of Tropical Meteorology》 SCIE 2018年第3期385-394,共10页
The planetary boundary layer height(PBLH) was calculated using the radiosonde sounding data, including120 L-band operational sites and 8 GPS sites in China. The diurnal and seasonal variations of PBLH were analyzed us... The planetary boundary layer height(PBLH) was calculated using the radiosonde sounding data, including120 L-band operational sites and 8 GPS sites in China. The diurnal and seasonal variations of PBLH were analyzed using radiosonde sounding(OBS-PBLH) and ERA data(ERA-PBLH). Based on comparison and error analyses, we discussed the main error sources in these data. The frequency distributions of PBLH variations under different regimes(the convective boundary layer, the neutral residual layer, and the stable boundary layer) can be well fitted by a Gamma distribution and the shape parameter k and scale parameter s values were obtained for different regions of China. The variation characteristics of PBLH were found in summer under these three regimes for different regions. The relationships between PBLH and PM_(2.5) concentration generally follow a power law under very low or no precipitation conditions in the region of Beijing, Tianjin and Hebei in summer. The results usually deviated from this power distribution only under strong precipitation or high relative humidity conditions because of the effects of hygroscopic growth of aerosols or wet deposition. The OBS-PBLH provided a reasonable spatial distribution relative to ERA-PBLH.This indicates that OBS-PBLH has the potential for identifying the variation of PM_(2.5) concentration. 展开更多
关键词 L-band and GPS sounding planetary boundary layer height PM2.5 concentration
下载PDF
The Uncertainty of Tropical Cyclone Intensity and Structure Based on Different Parameterization Schemes of Planetary Boundary Layer 被引量:5
4
作者 WANG Chen-xi YING Ming 《Journal of Tropical Meteorology》 SCIE 2020年第4期377-389,共13页
Based on different parameterization schemes of planetary boundary layer (PBL), the uncertainty of intensity and structure of the Super-strong Typhoon Rammasun (1409) is investigated using the WRF model (v3.4) with six... Based on different parameterization schemes of planetary boundary layer (PBL), the uncertainty of intensity and structure of the Super-strong Typhoon Rammasun (1409) is investigated using the WRF model (v3.4) with six PBL parameterization schemes. Results indicate that PBL uncertainty leads to the uncertainty in tropical cyclone (TC)prediction, which increases with forecast time. The uncertainty in TC prediction is mainly reflected in the uncertainty in TC intensity, with significant differences in the TC intensity forecasts using various PBL schemes. The uncertainty in TC prediction is also reflected in the uncertainty in TC structures. Greater intensity is accompanied by smaller vortex width,tighter vortex structure, stronger wind in the near-surface layer and middle and lower troposphere, stronger inflow(outflow) wind at the lower (upper) levels, stronger vertical upward wind, smaller thickness of the eye wall, smaller outward extension of the eye wall, and warmer warm core at the upper levels of eye. PBL height, surface upward heat flux and water vapor flux are important factors that cause the uncertainty in TC intensity and structure. The more surface upward heat flux and water vapor flux and the lower PBL height, the faster TC development and the stronger TC intensity. 展开更多
关键词 planetary boundary layer UNCERTAINTY tropical cyclone INTENSITY STRUCTURE
下载PDF
Validation and Spatiotemporal Distribution of GEOS-5-Based Planetary Boundary Layer Height and Relative Humidity in China 被引量:2
5
作者 Yidan SI Shenshen LI +4 位作者 Liangfu CHEN Chao YU Zifeng WANG Yang WANG Hongmei WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第4期479-492,共14页
Few studies have specifically focused on the validation and spatiotemporal distribution of planetary boundary layer height (PBLH) and relative humidity (RH) data in China. In this analysis, continuous PBLH and sur... Few studies have specifically focused on the validation and spatiotemporal distribution of planetary boundary layer height (PBLH) and relative humidity (RH) data in China. In this analysis, continuous PBLH and surface-level RH data simulated from GEOS-5 between 2004 and 2012, were validated against ground-based observations. Overall, the simulated RH was consistent with the statistical data from meteorological stations, with a correlation coefficient of 0.78 and a slope of 0.9. However, the simulated PBLH was underestimated compared to LIDAR data by a factor of approximately two, which was primarily because of poor simulation in late summer and early autumn. We further examined the spatiotemporal distribution characteristics of two factors in four regions--North China, South China, Northwest China, and the Tibetan Plateau. The results showed that the annual PBLH trends in all regions were fairly moderate but sensitive to solar radiation and precipitation, which explains why the PBLH values were ranked in order from largest to smallest as follows: Tibetan Plateau, Northwest China, North China, and South China. Strong seasonal variation of the PBLH exhibited high values in summer and low values in winter, which was also consistent with the turbulent vertical exchange. Not surprisingly, the highest RH in South China and the lowest RH in desert areas of Northwest China (less than 30%). Seasonally, South China exhibited little variation, whereas Northwest China exhibited its highest humidity in winter and lowest humidity in spring, the maximum values in the other regions were obtained from July to September. 展开更多
关键词 GEOS-5 planetary boundary layer height relative humidity VALIDATION spatiotemporal distribution
下载PDF
Diurnal variability of the planetary boundary layer height estimated from radiosonde data 被引量:3
6
作者 Jie Gu YeHui Zhang +1 位作者 Na Yang Rui Wang 《Earth and Planetary Physics》 CSCD 2020年第5期479-492,共14页
Diurnal variations in the planetary boundary layer height(PBLH)at different latitudes over different surface characteristics are described,based on 45 years(1973−2017)of radiosonde observations.The PBLH is determined ... Diurnal variations in the planetary boundary layer height(PBLH)at different latitudes over different surface characteristics are described,based on 45 years(1973−2017)of radiosonde observations.The PBLH is determined from the radiosonde data by the bulk Richardson number(BRN)method and verified by the parcel method and the potential temperature gradient method.In general,the BRN method is able to represent the height of the convective boundary layer(BL)and neutral residual layer cases but has relatively large uncertainty in the stable BL cases.The diurnal cycle of the PBLH over land is quite different from the cycle over ocean,as are their seasonal variations.For stations over land,the PBLH shows an apparent diurnal cycle,with a distinct maximum around 15:00 LT,and seasonal variation,with higher values in summer.Compared with the PBLH over land,over oceans the PBLH diurnal cycles are quite mild,the PBLHs are much lower,and the seasonal changes are less pronounced.The seasonal variations in the median PBLH diurnal cycle are positively correlated with the near-surface temperature and negatively correlated with the near-surface relative humidity.Finally,although at most latitudes the daytime PBLH exhibits,over these 45 years,a statistically significant increasing trend at most hours between 12:00 LT and 18:00 LT over both land and ocean,there is no significant trend over either land or ocean in the nighttime PBLH for almost all the studied latitudes. 展开更多
关键词 planetary boundary layer height diurnal cycle RADIOSONDE
下载PDF
Comparisons in the global planetary boundary layer height obtained from COSMIC radio occultation,radiosonde,and reanalysis data 被引量:1
7
作者 Jie Gu Yehui Zhang +1 位作者 Na Yang Rui Wang 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第2期21-27,共7页
The global planetary boundary layer height(PBLH)estimated from 11 years(2007–17)of Integrated Global Radiosonde Archive(IGRA)data,Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)soundings... The global planetary boundary layer height(PBLH)estimated from 11 years(2007–17)of Integrated Global Radiosonde Archive(IGRA)data,Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)soundings,and European Center for Medium-Range Weather Forecasts(ECMWF)interim reanalysis(ERAInterim)data,are compared in this study.In general,the spatial distribution of global PBLH derived from ERAInterim is consistent with the one from IGRA,both at 1200 UTC and 0000 UTC.High PBLH occurs at noon local time,because of strong radiation energy and convective activity.There are larger differences between the results of COSMIC and the other two datasets.PBLHs derived from COSMIC are much higher than those from radiosonde and reanalysis data.However,PBLHs derived from the three datasets all exhibit higher values in the low latitudes and lower ones in the high latitudes.The latitudinal difference between IGRA and COSMIC ranges from−1700 m to−500 m,while it ranges from−500 m to 250 m for IGRA and ERA-Interim.It is found that the differences among the three datasets are larger in winter and smaller in summer for most studied latitudes. 展开更多
关键词 planetary boundary layer height RADIOSONDE COSMIC REANALYSIS
下载PDF
Effects of Turbulent Dispersion of Atmospheric Balance Motions of Planetary Boundary Layer 被引量:1
8
作者 刘式适 黄伟 荣平平 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1992年第2期147-156,共10页
New Reynolds' mean momentum equations including both turbulent viscosity and dispersion are used to analyze atmospheric balance motions of the planetary boundary layer. It is pointed out that turbulent dispersion ... New Reynolds' mean momentum equations including both turbulent viscosity and dispersion are used to analyze atmospheric balance motions of the planetary boundary layer. It is pointed out that turbulent dispersion with r 0 will increase depth of Ekman layer, reduce wind velocity in Ekman layer and produce a more satisfactory Ekman spiral lines fit the observed wind hodograph. The wind profile in the surface layer including tur-bulent dispersion is still logarithmic but the von Karman constant k is replaced by k1 = 1 -2/k, the wind increasesa little more rapidly with height. 展开更多
关键词 Effects of Turbulent Dispersion of Atmospheric Balance Motions of planetary boundary layer
下载PDF
The Wind Structure in Planetary Boundary Layer
9
作者 赵鸣 徐银梓 伍荣生 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1989年第3期365-376,共12页
The investigations on the dynamies of the PBL have been developed in recent years. Some authors emphasized macro-dynamics and others emphasized micro-structure of the PBL. In this paper, we study and review some main ... The investigations on the dynamies of the PBL have been developed in recent years. Some authors emphasized macro-dynamics and others emphasized micro-structure of the PBL. In this paper, we study and review some main characteristics of the wind field in the PBL from the view point connecting the macro-dynamics and micro-stucture of the PBL, thus providing the physical basis for the further research of the dynamics and the parameterization of the PBL. 展开更多
关键词 The Wind Structure in planetary boundary layer PBL
下载PDF
Development of a Tropospheric Lidar for Observations of the Planetary Boundary Layer above Medellin, Colombia
10
作者 Daniel Jose Nisperuza Toledo Alvaro Efrain Bastidas Gustin 《Journal of Physical Science and Application》 2011年第3期163-169,共7页
In the Universidad Nacional de Colombia, Sede Medellin, the Lasers and Spectroscopy Group (GLEO) has been designed and manufactured a tropospheric lidar station based on a pulsed Nd:YAG laser operating at 532-nm wa... In the Universidad Nacional de Colombia, Sede Medellin, the Lasers and Spectroscopy Group (GLEO) has been designed and manufactured a tropospheric lidar station based on a pulsed Nd:YAG laser operating at 532-nm wavelength. The main scientific objective has been to evaluate the vertical structure of the Planetary Boundary Layer (PBL) in urban sites of Medellin-Colombia, South America, (Longitude 75°34′05″ West, Latitude 6°13′55″ North), using suspended aerosols as tracers of the atmospheric motion. This paper reports the design, manufactures and performance of an elastic lidar system, which was operated under varying air pollution and meteorological conditions and the observations presented here were performed in early 2010, over the metropolitan area of Medellin, city included in the Andean region of Colombia. 展开更多
关键词 Tropospheric lidar planetary boundary layer (PBL)
下载PDF
Rainfall Sensitivity to Microphysics and Planetary Boundary Layer Parameterizations in Convection-Permitting Simulations over Northwestern South America
11
作者 K.Santiago HERNANDEZ Sebastian GOMEZ-RIOS +3 位作者 Juan J.HENAO Vanessa ROBLEDO Alvaro RAMiREZ-CARDONA Angela M.RENDON 《Journal of Meteorological Research》 SCIE CSCD 2024年第4期805-825,共21页
Convection-permitting modeling allows us to understand mechanisms that influence rainfall in specific regions.However,microphysics parameterization(MP) and planetary boundary layer(PBL) schemes remain an important sou... Convection-permitting modeling allows us to understand mechanisms that influence rainfall in specific regions.However,microphysics parameterization(MP) and planetary boundary layer(PBL) schemes remain an important source of uncertainty,affecting rainfall intensity,occurrence,duration,and propagation.Here,we study the sensitivity of rainfall to three MP [Weather Research and Forecasting(WRF) Single-Moment 6-class(WSM6),Thompson,and Morrison] and two PBL [the Yonsei University(YSU) and Mellor–Yamada Nakanishi Niino(MYNN)] schemes with a convection-permitting resolution(4 km) over northwestern South America(NWSA).Simulations were performed by using the WRF model and the results were evaluated against soundings,rain gauges,and satellite data,considering the spatio-temporal variability of rainfall over diverse regions prone to deep convection in NWSA.MP and PBL schemes largely influenced simulated rainfall,with better results for the less computationally expensive WSM6 MP and YSU PBL schemes.Regarding rain gauges and satellite estimates,simulations with Morrison MP overestimated rainfall,especially westward of the Andes,whereas the MYNN PBL underestimated precipitation in the Amazon–Savannas flatlands.We found that the uncertainty in the rainfall representation is highly dependent on the region,with a higher influence of MP in the Colombian Pacific and PBL in the Amazon–Savannas flatlands.When analyzing rainfall-related processes,the selection of both MP and PBL parameterizations exerted a large influence on the simulated lower tropospheric moisture flux and moisture convergence.PBL schemes significantly influenced the downward shortwave radiation,with MYNN simulating a greater amount of low clouds,which decreased the radiation income.Furthermore,latent heat fluxes were greater for YSU,favoring moist convection and rainfall.MP schemes had a marked impact on vertical velocity.Specifically,Morrison MP showed stronger convection and higher precipitation rates,which is associated with a greater latent heat release due to solid-phase hydrometeor formation.This study provides insights into assessing physical parameterizations in numerical models and suggests key processes for rainfall representation in NWSA. 展开更多
关键词 sensitivity MICROPHYSICS planetary boundary layer(PBL) Weather Research and Forecasting(WRF) processes
原文传递
Large Eddy Simulation and Study of the Urban Boundary Layer 被引量:5
12
作者 苗世光 蒋维楣 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第4期650-661,共12页
Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The... Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL. 展开更多
关键词 uniform underlying surface urban boundary layer planetary boundary layer large eddy simulation (LES) ANISOTROPY turbulent kinetic energy closure model
下载PDF
Effect of Boundary Layer Latent Heating on MJO Simulations 被引量:7
13
作者 凌健 李崇银 +2 位作者 周文 贾小龙 Chidong ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第1期101-115,共15页
A latent heating peak in the PBL was detected in a simulation by a global GCM that failed to reproduce Madden Julian Oscillation (MJO). The latent heating peak in the PBL was generated by very shallow convection, wh... A latent heating peak in the PBL was detected in a simulation by a global GCM that failed to reproduce Madden Julian Oscillation (MJO). The latent heating peak in the PBL was generated by very shallow convection, which prevented moisture from being transported to the free troposphere. Large amount of moisture was therefore confined to the PBL, leading to a dry bias in the free atmosphere. Suffering from this dry bias, deep convection became lethargic, and MJO signals failed to occur. When the latent heating peak in the PBL was removed in another simulation, reasonable MJO signals, including the eastward propagation and the structure of its large-scale circulation, appeared. We therefore propose that the excessive latent heating peak in the PBL due to hyperactive shallow convection may be a reason for a lack of MJO signals in some simulations by other GCMs as well. 展开更多
关键词 Madden Julian Oscillation (MJO) latent heating planetary boundary layer (PBL)
下载PDF
Vertical Evolution of Boundary Layer Volatile Organic Compounds in Summer over the North China Plain and the Differences with Winter 被引量:4
14
作者 Shuang WU Guiqian TANG +5 位作者 Yinghong WANG Rong MAI Dan YAO Yanyu KANG Qinglu WANG Yuesi WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第7期1165-1176,共12页
The vertical observation of volatile organic compounds(VOCs)is an important means to clarify the mechanisms of ozone formation.To explore the vertical evolution of VOCs in summer,a field campaign using a tethered ball... The vertical observation of volatile organic compounds(VOCs)is an important means to clarify the mechanisms of ozone formation.To explore the vertical evolution of VOCs in summer,a field campaign using a tethered balloon during summer photochemical pollution was conducted in Shijiazhuang from 8 June to 3 July 2019.A total of 192 samples were collected,23 vertical profiles were obtained,and the concentrations of 87 VOCs were measured.The range of the total VOC concentration was 41-48 ppbv below 600 m.It then slightly increased above 600 m,and rose to 58±52 ppbv at 1000 m.The proportion of alkanes increased with height,while the proportions of alkenes,halohydrocarbons and acetylene decreased.The proportion of aromatics remained almost unchanged.A comparison with the results of a winter field campaign during 8-16 January 2019 showed that the concentrations of all VOCs in winter except for halohydrocarbons were more than twice those in summer.Alkanes accounted for the same proportion in winter and summer.Alkenes,aromatics,and acetylene accounted for higher proportions in winter,while halohydrocarbons accounted for a higher proportion in summer.There were five VOC sources in the vertical direction.The proportions of gasoline vehicular emissions+industrial sources and coal burning were higher in winter.The proportions of biogenic sources+long-range transport,solvent usage,and diesel vehicular emissions were higher in summer.From the surface to 1000 m,the proportion of gasoline vehicular emissions+industrial sources gradually increased. 展开更多
关键词 volatile organic compounds vertical profile planetary boundary layer source apportionment
下载PDF
Retrieval of Boundary Layer Height and Its Influence on PM_(2.5) Concentration Based on Lidar Observation over Guangzhou 被引量:2
15
作者 SONG Lang DENG Tao +5 位作者 LI Zhen-ning WU Cheng HE Guo-wen LI Fei WU Meng WU Dui 《Journal of Tropical Meteorology》 SCIE 2021年第3期303-318,共16页
Wavelet analysis was applied to lidar observations to retrieve the planetary boundary layer height(PBLH)over Guangzhou from September 2013 to November 2014 over Guangzhou.Impact of the boundary effect and the wavelet ... Wavelet analysis was applied to lidar observations to retrieve the planetary boundary layer height(PBLH)over Guangzhou from September 2013 to November 2014 over Guangzhou.Impact of the boundary effect and the wavelet scale factor on the accuracy of the retrieved PBLH has been explored thoroughly.In addition,the PBLH diurnal variations and the relationship between PM_(2.5) concentration and PBLH during polluted and clean episodes were studied.Results indicate that the most steady retrieved PBLH can be obtained when scale factor is chosen between 300-390 m.The retrieved maximum and minimum PBLH in the annual mean diurnal cycle were~1100 m and~650 m,respectively.The PBLH was significantly lower in the dry season than in the wet season,with the average highest PBLH in the dry season and the wet season being~1050 m and~1200 m respectively.Compared to the wet season,the development of PBLH in the dry season was delayed by at least one hour due to the seasonal cycle of solar radiation.Episode analysis indicated that the PBLH was~50%higher during clean episodes than during haze episodes.The average highest PBLH in the haze episodes and clean episodes were~800 m and~1300 m,respectively.A significant negative correlation between PBLH and PM_(2.5) concentration(r=-0.55**)is discovered.According to China"Ambient Air Quality Standard",the PBLH values in good and slightly polluted conditions were 1/6-1/3 lower than that in excellent conditions,while the corresponding PM_(2.5) concentration were~2-2.5 times higher. 展开更多
关键词 HAZE LIDAR PM_(2.5) planetary boundary layer height wavelet analysis
下载PDF
THE STUDY OF THE CHARACTERISTICS OF BOUNDARY LAYER OVER HILL TERRAIN
16
作者 郝为锋 刘凯 王庆安 《Journal of Tropical Meteorology》 SCIE 1996年第2期203-215,共13页
THESTUDYOFTHECHARACTERISTICSOFBOUNDARYLAYEROVERHILLTERRAINHaoWeifeng(郝为锋),LiuKai(刘凯)(MeteorologicalCollegeof... THESTUDYOFTHECHARACTERISTICSOFBOUNDARYLAYEROVERHILLTERRAINHaoWeifeng(郝为锋),LiuKai(刘凯)(MeteorologicalCollegeofAirForce,Nanjing2... 展开更多
关键词 planetary boundary layer HILL TERRAIN wind and temperature FIELDS
下载PDF
数值天气预报模式的行星边界层方案热力预报变量选择
17
作者 赵怡雪 周博闻 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期276-286,共11页
在数值天气预报模式中,大气边界层湍流混合由行星边界层方案承担.传统的边界层方案多采用位温作为热力学预报变量,计算感热通量并获得位温的湍流倾向,多数边界层方案设计之初,也往往只考虑干边界层中的位温湍流混合.事实上,驱动边界层... 在数值天气预报模式中,大气边界层湍流混合由行星边界层方案承担.传统的边界层方案多采用位温作为热力学预报变量,计算感热通量并获得位温的湍流倾向,多数边界层方案设计之初,也往往只考虑干边界层中的位温湍流混合.事实上,驱动边界层热对流的是浮力而非热力,前者还包含了水汽的作用,由虚位温表征.基于湍流可分辨的大涡模拟来评估传统边界层方案所参数化的感热通量在湿边界层中的适用性,重点关注方案中涉及逆梯度修正项的关键系数,同时也考察浮力通量的参数化评估结果显示浮力通量在干湿边界层中具备一致性,其模式系数不随水汽条件变化,因此,推荐以虚位温替代位温作为行星边界层方案热力预报变量. 展开更多
关键词 行星边界层方案 对流边界层 虚位温 浮力通量 感热通量
下载PDF
基于激光雷达探究西北农业城市颗粒物来源
18
作者 杨丽丽 朱文萍 +3 位作者 陶会杰 杨燕萍 王莉娜 李晓云 《中国环境监测》 CAS CSCD 北大核心 2024年第4期251-260,共10页
为科学治理我国西北农业城市大气污染,亟需对其污染来源进行探究。选取武威市2021年9月4日高空浮尘过程,利用颗粒物激光雷达结合地面颗粒物浓度监测结果进行分析发现,高空浮尘沉降至近地面时,地面颗粒物浓度明显升高,空气质量级别由良... 为科学治理我国西北农业城市大气污染,亟需对其污染来源进行探究。选取武威市2021年9月4日高空浮尘过程,利用颗粒物激光雷达结合地面颗粒物浓度监测结果进行分析发现,高空浮尘沉降至近地面时,地面颗粒物浓度明显升高,空气质量级别由良转为轻度污染。利用颗粒物激光雷达走航和定点扫描监测2022年1月25—26日武威市污染分布发现,武威市城区周边农村居民散烧污染排放显著,尤其是在夜间。通过对分别由自然因素与人为因素引起的两类典型污染过程的研究发现,大气污染治理不能仅依靠地面观测站监测数据,还需结合颗粒物激光雷达探测结果,从而准确定位污染来源。对于我国西北农业城市而言,大气污染治理需内防本地污染物生成,外防沙尘输入引起的颗粒物浓度升高。 展开更多
关键词 大气污染 激光雷达 浮尘 走航监测 大气边界层(PBL)
下载PDF
CMA-GFS 4DVar边界层过程线性化的改进 被引量:3
19
作者 刘永柱 张林 +1 位作者 陈炯 王超 《应用气象学报》 CSCD 北大核心 2023年第1期15-26,共12页
持续发展和优化切线性模式的线性化物理过程,保持与非线性模式一致是改善四维变分同化(4DVar)分析和预报效果的有效方法之一。目前业务系统的CMA-GFS模式采用基于Charney-Phillips(C-P)跳点的边界层参数化方案,而CMA-GFS 4DVar系统中采... 持续发展和优化切线性模式的线性化物理过程,保持与非线性模式一致是改善四维变分同化(4DVar)分析和预报效果的有效方法之一。目前业务系统的CMA-GFS模式采用基于Charney-Phillips(C-P)跳点的边界层参数化方案,而CMA-GFS 4DVar系统中采用基于Lorenz跳点的边界层线性化方案。为改善CMA-GFS 4DVar系统的边界层分析和预报效果,基于C-P跳点的边界层参数化方案研发了新边界层线性化方案,并通过对方案中地表热量通量和水汽通量扰动、自由大气的理查逊系数扰动、边界层的热量和动量交换系数扰动等进行更加精细地规约化约束,在确保CMA-GFS切线性和伴随模式稳定运行的情况下,减少线性化过程对切线性模式预报精度的影响。切线性近似试验检验表明:相较于原方案,新边界层线性化方案可以减少边界层位温和比湿的相对误差,最大可减少10%。批量4DVar循环同化试验表明:新边界层线性化方案可以有效改善切线性模式对低层位温、风场和比湿扰动的预报精度,减少4DVar内外循环目标泛函的相对差异,并提高700 hPa位势高度的可预报时效。 展开更多
关键词 边界层过程 线性化物理过程 CMA-GFS 四维变分同化
下载PDF
一次华北暴风雪过程中边界层中尺度扰动涡旋和水汽输送特征的分析 被引量:3
20
作者 易笑园 张庆 +2 位作者 陈宏 林晓萌 陶局 《高原气象》 CSCD 北大核心 2023年第5期1311-1324,共14页
利用多部风廓线雷达和多普勒雷达、地面自动气象观测站、探空和卫星等多种监测资料,结合ERA5 0.25°×0.25°逐小时再分析资料,针对2020年2月14日华北暴风雪过程中边界层中尺度扰动涡旋(PMDV)开展分析,包括空间结构、形成... 利用多部风廓线雷达和多普勒雷达、地面自动气象观测站、探空和卫星等多种监测资料,结合ERA5 0.25°×0.25°逐小时再分析资料,针对2020年2月14日华北暴风雪过程中边界层中尺度扰动涡旋(PMDV)开展分析,包括空间结构、形成维持机制及其对降雪的影响,同时关注多股气流在不同高度层的水汽输送和净流入等特征。结果表明:PMDV是在500 hPa冷涡前部、 850 hPa暖性倒槽内和近地层东北风“冷垫”之上的悬空涡旋,其厚度约为1.2 km,水平尺度为100~300 km,生命史达17 h。它最先在边界层内出现,而后向上伸展(顶部达2 km),最终在边界层内消失。PMDV的成因:一是强劲持久的偏东气流西进,遇太行山脉阻挡,发生逆时针转向;二是在涡旋初生地存在持久的锋生作用,且4 h后在850 hPa上出现完整的气旋性环流。PMDV的发展维持原因是暖平流输送造成减压、凝结潜热释放和弱锋生三者的共同作用。PMDV促进了研究区内的东南风急流、正涡度、垂直上升速度和水汽通量散度等物理量的增大或加强,从而影响了降雪的持续时间和强度。研究区内的水汽绝大部分源于850 hPa以下的三股气流,西南支气流携带的水汽虽最为深厚,但在700 hPa以上的净流入极少;东南支气流对水汽的贡献最大,占净流入总量的86.4%;东北支气流携带的水汽多集中于850 hPa层。 展开更多
关键词 暴风雪 边界层中尺度扰动涡旋 结构 形成维持 水汽输送
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部