The incorporation of straw in cultivated ifelds can potentially improve soil quality and crop yield. However, the presence of recalcitrant carbon compounds in straw slow its decomposition rate. The objective of this s...The incorporation of straw in cultivated ifelds can potentially improve soil quality and crop yield. However, the presence of recalcitrant carbon compounds in straw slow its decomposition rate. The objective of this study was to determine the effects of different nitrogen sources, with and without the application of zinc, on straw decomposition and soil quality. Soils were treated with three different nitrogen sources, with and without zinc: urea (CO(NH2)2), ammonium sulfate ((NH4)2SO4), and ammonium chloride (NH4Cl). The combined treatments were as follows:maize (M) and wheat (W) straw incorporated into urea-, ammonium sulfate-, or ammonium chloride-treated soil (U, S, and C, respectively) with and without zinc (Z) (MU, MUZ, WU, WUZ;MS, MSZ, WS, WSZ;MC, MCZ, WC, WCZ, respectively);straw with zinc only (MZ, WZ);straw with untreated soil (MS, WS);and soil-only or control conditions (NT). The experiment consisted of 17 treatments with four replications. Each pot contained 150 g soil and 1.125 g straw, had a moisture content of 80%of the ifeld capacity, and was incubated for 53 days at 25°C. The rates of CO2-C emission, cumulative CO2-C evolution, total CO2 production in the soils of different treatments were measured to infer decomposition rates. The total organic carbon (TOC), labile organic carbon (LOC), and soil microbial biomass in the soils of different treatments were measured to infer soil quality. All results were signiifcantly different (P〈0.05) with the exception of the labile organic carbon (LOC). The maize and wheat straw showed different patterns in CO2 evolution rates. For both straw types, Zn had a synergic effect with U, but an antagonistic effect with the other N sources as determined by the total CO2 produced. The MUZ treatment showed the highest decomposition rate and cumulative CO2 concentration (1 120.29 mg/pot), whereas the WACZ treatment had the lowest cumulative CO2 concentration (1 040.57 mg/pot). The addition of NH4Cl resulted in the highest total organic carbon (TOC) concentration (11.59 mg kg-1). The incorporation of wheat straw resulted in higher microbial biomass accumulation in soils relative to that of the maize straw application. The results demonstrate that mineral N sources can affect the ability of microorganisms to decompose straw, as well as the soil carbon concentrations.展开更多
Black soil is one of the most precious soil resources on earth because it has abundant carbon stocks and a relatively high production capacity. However, decreasing organic matter after land reclamation, and the effect...Black soil is one of the most precious soil resources on earth because it has abundant carbon stocks and a relatively high production capacity. However, decreasing organic matter after land reclamation, and the effects of long-term inputs of organic carbon have made it less fertile black soil in Northeast China. Straw return could be an effective method for improving soil organic carbon(SOC) sequestration in black soils. The objective of this study was to evaluate whether straw return effectively increases SOC sequestration. Long-term field experiments were conducted at three sites in Northeast China with varying latitudes and SOC densities. Study plots were subjected to three treatments: no fertilization(CK); inorganic fertilization(NPK); and NPK plus straw return(NPKS). The results showed that the SOC stocks resulting from NPKS treatment were 4.0 and 5.7% higher than those from NPK treatment at two sites, but straw return did not significantly affect the SOC stocks at the third site. Furthermore, at higher SOC densities, the NPKS treatment resulted in significantly higher soil carbon sequestration rates(CSR) than the NPK treatment. The equilibrium value of the CSR for the NPKS treatment equated to cultivation times of 17, 11, and 8 years at the different sites. Straw return did not significantly increase the SOC stocks in regions with low SOC densities, but did enhance the C pool in regions with high SOC densities. These results show that there is strong regional variation in the effects of straw return on the SOC stocks in black soil in Northeast China. Additional cultivations and fertilization practices should be used when straw return is considered as an approach for the long-term improvement of the soil organic carbon pool.展开更多
Converting from conventional tillage to no-tillage influences the soil aggregate-size distribution and thus soil organic carbon (SOC) stabilization. However, the dynamics of soil aggregation and the straw-derived ca...Converting from conventional tillage to no-tillage influences the soil aggregate-size distribution and thus soil organic carbon (SOC) stabilization. However, the dynamics of soil aggregation and the straw-derived carbon (C) incorporation within aggregate fractions are not well understood. An experiment was established in 2004 to test the effects of two treatments, no-tillage with residue (NT) and conventional tillage without residue (CT), on the soil aggregate-size distribution and SOC stabilization in a continuous maize (Zea mays L.) cropping system located in the semiarid region of northern China. Soil samples were collected from the 0-10 cm layer in 2008, 2010 and 2015, and were separated into four aggregate-size classes (〉2, 0.25-2, 0.053-0.25, and 〈0.053 mm) by wet-sieving. In each year, NT soil had a higher proportion of macroaggregates (i.e., 〉2 and 0.25-2 mm) and associated SOC concentration compared with CT. Additionally, to compare straw-derived C incorporation within NT and CT aggregate fractions, ^13C-labeled straw was incubated with intact NT and CT soils. After 90 days, the highest proportion of 13C-labeled straw-derived C was observed in the 〉2 mm fraction, and this proportion was lower in NT than that in CT soil. Overall, we conclude that long-term continuous NT increased the proportion of macroaggregates and the C concentration within macroaggregates, and the physical protection provided by NT is beneficial for soil C sequestration in the continuous maize cropping system in semiarid regions of northern China.展开更多
The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of s...The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of straw and biochar addition on soil nitrogen form, carbon storage, and super rice yield in cold waterlogged paddy soils. We performed field trials with four treatments including conventional fertilization system (CK), straw amendment 6 t ha^-1 (S), biochar amendment 2 t ha^-1 (C1), and biochar amendment 40 t ha^-1 (C2). The super japonica rice variety, Shennong 265, was selected as the test Crop. The results showed that the straw and biochar amendments improved total nitrogen and organic carbon content of the soil, reduced N2O emissions, and had little influence on nitrogen retention, nitrogen density, and CO2 emissions. The S and C1 increased NH4^+-N content, and C2 increased NO3^--N content. Both S and C1 had little influence on soil organic carbon density (SOCD) and C/N ratio. However, C2 greatly increased SOCD and C/N ratio. C1 and C2 significantly improved the soil carbon sequestration (SCS) by 62.9 and 214.0% (P〈0.05), respectively, while S had no influence on SCS. C1 and C2 maintained the stability of super rice yield, and significantly reduced CH4 emissions, global warming potential (GWP), and greenhouse gas intensity (GHGI), whereas S had the opposite and negative effects. In summary, the biochar amendments in cold waterlogged paddy soils of North China increased soil nitrogen and carbon content, improved soil carbon sequestration, and reduced GHG emission without affecting the yield of super rice.展开更多
Soil tillage and straw retention in dryland areas may affect the soil aggregates and the distribution of total organic carbon. The aims of this study were to establish how different tillage and straw retention practic...Soil tillage and straw retention in dryland areas may affect the soil aggregates and the distribution of total organic carbon. The aims of this study were to establish how different tillage and straw retention practices affect the soil aggregates and soil organic carbon(SOC) and total nitrogen(TN) contents in the aggregate fractions based on a long-term(approximately 15 years) field experiment in the semi-arid western Loess Plateau, northwestern China. The experiment included four soil treatments, i.e., conventional tillage with straw removed(T), conventional tillage with straw incorporated(TS), no tillage with straw removed(NT) and no tillage with straw retention(NTS), which were arranged in a complete randomized block design. The wet-sieving method was used to separate four size fractions of aggregates, namely, large macroaggregates(LA, >2000 μm), small macroaggregates(SA, 250–2000 μm), microaggregates(MA, 53–250 μm), and silt and clay(SC, <53 μm). Compared to the conventional tillage practices(including T and TS treatments), the percentages of the macroaggregate fractions(LA and SA) under the conservation tillage practices(including NT and NTS treatments) were increased by 41.2%–56.6%, with the NTS treatment having the greatest effect. For soil layers of 0–5, 5–10 and 10–30 cm, values of the mean weight diameter(MWD) under the TS and NTS treatments were 10.68%, 13.83% and 17.65%, respectively. They were 18.45%, 19.15% and 14.12% higher than those under the T treatment, respectively. The maximum contents of the aggregate-associated SOC and TN were detected in the SA fraction, with the greatest effect being observed for the NTS treatment. The SOC and TN contents were significantly higher under the NTS and TS treatments than under the T treatment. Also, the increases in SOC and TN levels were much higher in the straw-retention plots than in the straw-removed plots. The macroaggregates(including LA and SA fractions) were the major pools for SOC and TN, regardless of tillage practices, storing 3.25–6.81 g C/kg soil and 0.34–0.62 g N/kg soil. Based on the above results, we recommend the NTS treatment as the best option to boost soil aggregates and to reinforce carbon and nitrogen sequestration in soils in the semi-arid western Loess Plateau of northwestern China.展开更多
Activated carbons,RS-1,RS-2,and RS-3,prepared from rice straw with(NH4)2HPO4 activation were used as adsorbents for removing phenols from aqueous solutions.The maximum adsorption capacities of phenol for RS-1,RS-2,and...Activated carbons,RS-1,RS-2,and RS-3,prepared from rice straw with(NH4)2HPO4 activation were used as adsorbents for removing phenols from aqueous solutions.The maximum adsorption capacities of phenol for RS-1,RS-2,and RS-3 were 163.9,172.9,and 200.0 mg/g,respectively.The equilibrium data were analyzed by the Langmuir,Freundlich,and Temkin models.It displayed that Langmuir isotherm fitted to the results best.The dimensionless parameter RL indicated the favorable nature of the adsorption of phenol.Otherwise,the kinetic rates were well explained by pseudo-second-order model.According to the results,activated carbon derived from waste rice straw can be a high-performance adsorbent for wastewater treatment.展开更多
Straw return has been strongly recommended in China,whereas applying biochar into soil is considered to provide more benefits for agriculture as well as the environment.In this study,a five-year(2011-2015) field exper...Straw return has been strongly recommended in China,whereas applying biochar into soil is considered to provide more benefits for agriculture as well as the environment.In this study,a five-year(2011-2015) field experiment was conducted to evaluate the effects of uncharred maize straw amendment(MS) and charred maize straw amendment(charred MS) on organic carbon(C) contents in bulk soil and in various soil aggregate-size and density fractions.Compared to no amendment(CK),the bulk soil organic C content significantly improved by 9.30% for MS and by 23.4% for charred MS.Uncharred and charred maize straw applied annually at a consistent equal-C dosage resulted in 19.7 and 58.2% organic C sequestration efficiency in soil,respectively,after the five years of the field experiment.The percentages of macroaggregates(>0.25 mm) and occluded microaggregates(0.25-0.053 mm) obviously increased by 7.73 and 18.1% for MS and by 10.7 and 19.6% for charred MS,respectively.Moreover,significant incremental increases of 19.4 and 35.0% in macroaggregate-associated organic C occurred in MS and charred MS,respectively.The occluded microaggregates associated organic C significantly increased by 21.7% for MS and 25.1% for charred MS.Mineral-associated organic C(<0.053 mm) inside the macroaggregates and the occluded microaggregates obviously improved by 24.7 and 33.3% for MS and by 18.4 and 44.9% for charred MS.Organic C associated with coarse particulate organic matter(POM) within the macroaggregates markedly increased by 65.1 and 41.2% for MS and charred MS,respectively.Charred MS resulted in a noteworthy increment of 50.4% for organic C associated with heavy POM inside the occluded microaggregates,whereas charred MS and MS observably improved organic C associated with heavy POM inside the free microaggregates by 36.3 and 20.0%,respectively.These results demonstrate that uncharred and charred maize straw amendments improve C sequestration by physically protecting more organic C in the macroaggregates and the occluded microaggregates.Compared to the feedstock straw amendment,charred maize straw amendment is more advantageous to C sequestration.展开更多
On the basis of expounding the status quo and using developmental trend of China's straw,4 indices are selected:straw yield,planting area,using amount of fertilizer and effective irrigation area.According to the r...On the basis of expounding the status quo and using developmental trend of China's straw,4 indices are selected:straw yield,planting area,using amount of fertilizer and effective irrigation area.According to the relevant data of China Statistical Yearbook from 1991 to 2008,by using linear regression model,we calculate China's rural straw yield,analyze the factors impacting straw yield,and point out that the using amount of fertilizer is the important factor impacting straw yield.Based on these,in the perspective of low-carbon agricultural economy,we put forward suggestions of using straw comprehensively from 4 perspectives in order to provide theoretical reference for decision-makers:improve fertilizer dependence;develop straw reuse technology;popularize the technology of straw gasification actively;strengthen farmers' low-carbon awareness.展开更多
The semi-carbonization method is a kind of waste treatment to carbonize rice straw fiber at low semi-carbon temperature. The rice straw fiber is carbonized incompletely, which serves as building materials additive. Th...The semi-carbonization method is a kind of waste treatment to carbonize rice straw fiber at low semi-carbon temperature. The rice straw fiber is carbonized incompletely, which serves as building materials additive. The results reveal that the optimized carbonization condition is at 313 ℃ for 20-40 min with H3PO4 as activator. The structure of semi-carbonized straw fiber displays a large quantity of micropores, with which the wall thickness and the pore diameter are in the range of 1-4 μm, presenting the iodine sorption value of 1 320-1 470 mL/g and the methylene blue sorption value of 1 330-1 460 mg/g, respectively. Moreover, the acidic oxygen-containing groups impart the structure higher sorption of polar molecules. The semi-carbonized rice straw fiber with open and closed micro-mesopores demonstrates good hygroscopicity, implying the potential application as a functional additive in building materials.展开更多
In this study,rice straw(RS) was liquefied by ethylene carbonate(EC) using H_2SO_4 as a catalyst.The effects of various process conditions on the liquefaction characteristics were investigated by FT-IR and residue con...In this study,rice straw(RS) was liquefied by ethylene carbonate(EC) using H_2SO_4 as a catalyst.The effects of various process conditions on the liquefaction characteristics were investigated by FT-IR and residue content analysis.The results show that cellulose and lignin are degraded during the liquefaction process and large amounts of groups are generated.In addition,it is difficult to effectively liquefy RS by using EC alone as the liquefying agent without other additives.Compared to water addition on liquefaction,the residue content can be significantly reduced up to 30% by adding H_2O_2.It has also been proved that the liquor ratio(RS/EC,w/v) of 1∶5 with H_2O_2 as an additive at 145℃ for liquefaction time of 60 min in the presence of H_2SO_4 can accelerate the liquefaction process and high liquefaction yield can be obtained.展开更多
基金supported by the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2012BAD14B11)the National Natural Science Foundation of China (41371288, 31071863)the Fundamental Research Funds for Northwest A&F University, China (QN2011074)
文摘The incorporation of straw in cultivated ifelds can potentially improve soil quality and crop yield. However, the presence of recalcitrant carbon compounds in straw slow its decomposition rate. The objective of this study was to determine the effects of different nitrogen sources, with and without the application of zinc, on straw decomposition and soil quality. Soils were treated with three different nitrogen sources, with and without zinc: urea (CO(NH2)2), ammonium sulfate ((NH4)2SO4), and ammonium chloride (NH4Cl). The combined treatments were as follows:maize (M) and wheat (W) straw incorporated into urea-, ammonium sulfate-, or ammonium chloride-treated soil (U, S, and C, respectively) with and without zinc (Z) (MU, MUZ, WU, WUZ;MS, MSZ, WS, WSZ;MC, MCZ, WC, WCZ, respectively);straw with zinc only (MZ, WZ);straw with untreated soil (MS, WS);and soil-only or control conditions (NT). The experiment consisted of 17 treatments with four replications. Each pot contained 150 g soil and 1.125 g straw, had a moisture content of 80%of the ifeld capacity, and was incubated for 53 days at 25°C. The rates of CO2-C emission, cumulative CO2-C evolution, total CO2 production in the soils of different treatments were measured to infer decomposition rates. The total organic carbon (TOC), labile organic carbon (LOC), and soil microbial biomass in the soils of different treatments were measured to infer soil quality. All results were signiifcantly different (P〈0.05) with the exception of the labile organic carbon (LOC). The maize and wheat straw showed different patterns in CO2 evolution rates. For both straw types, Zn had a synergic effect with U, but an antagonistic effect with the other N sources as determined by the total CO2 produced. The MUZ treatment showed the highest decomposition rate and cumulative CO2 concentration (1 120.29 mg/pot), whereas the WACZ treatment had the lowest cumulative CO2 concentration (1 040.57 mg/pot). The addition of NH4Cl resulted in the highest total organic carbon (TOC) concentration (11.59 mg kg-1). The incorporation of wheat straw resulted in higher microbial biomass accumulation in soils relative to that of the maize straw application. The results demonstrate that mineral N sources can affect the ability of microorganisms to decompose straw, as well as the soil carbon concentrations.
基金financially supported by the National Basic Research Program of China (973 Program, 2013CB127404)the Collaborative Innovation Action of Scientific and Technological Innovation Project of the Chinese Academy of Agricultural
文摘Black soil is one of the most precious soil resources on earth because it has abundant carbon stocks and a relatively high production capacity. However, decreasing organic matter after land reclamation, and the effects of long-term inputs of organic carbon have made it less fertile black soil in Northeast China. Straw return could be an effective method for improving soil organic carbon(SOC) sequestration in black soils. The objective of this study was to evaluate whether straw return effectively increases SOC sequestration. Long-term field experiments were conducted at three sites in Northeast China with varying latitudes and SOC densities. Study plots were subjected to three treatments: no fertilization(CK); inorganic fertilization(NPK); and NPK plus straw return(NPKS). The results showed that the SOC stocks resulting from NPKS treatment were 4.0 and 5.7% higher than those from NPK treatment at two sites, but straw return did not significantly affect the SOC stocks at the third site. Furthermore, at higher SOC densities, the NPKS treatment resulted in significantly higher soil carbon sequestration rates(CSR) than the NPK treatment. The equilibrium value of the CSR for the NPKS treatment equated to cultivation times of 17, 11, and 8 years at the different sites. Straw return did not significantly increase the SOC stocks in regions with low SOC densities, but did enhance the C pool in regions with high SOC densities. These results show that there is strong regional variation in the effects of straw return on the SOC stocks in black soil in Northeast China. Additional cultivations and fertilization practices should be used when straw return is considered as an approach for the long-term improvement of the soil organic carbon pool.
基金partially supported by the National Natural Science Foundation of China (31171512)the Central Publicinterest Scientific Institution Basal Research Fund, China (Y2017PT26)
文摘Converting from conventional tillage to no-tillage influences the soil aggregate-size distribution and thus soil organic carbon (SOC) stabilization. However, the dynamics of soil aggregation and the straw-derived carbon (C) incorporation within aggregate fractions are not well understood. An experiment was established in 2004 to test the effects of two treatments, no-tillage with residue (NT) and conventional tillage without residue (CT), on the soil aggregate-size distribution and SOC stabilization in a continuous maize (Zea mays L.) cropping system located in the semiarid region of northern China. Soil samples were collected from the 0-10 cm layer in 2008, 2010 and 2015, and were separated into four aggregate-size classes (〉2, 0.25-2, 0.053-0.25, and 〈0.053 mm) by wet-sieving. In each year, NT soil had a higher proportion of macroaggregates (i.e., 〉2 and 0.25-2 mm) and associated SOC concentration compared with CT. Additionally, to compare straw-derived C incorporation within NT and CT aggregate fractions, ^13C-labeled straw was incubated with intact NT and CT soils. After 90 days, the highest proportion of 13C-labeled straw-derived C was observed in the 〉2 mm fraction, and this proportion was lower in NT than that in CT soil. Overall, we conclude that long-term continuous NT increased the proportion of macroaggregates and the C concentration within macroaggregates, and the physical protection provided by NT is beneficial for soil C sequestration in the continuous maize cropping system in semiarid regions of northern China.
基金supported by the Science and Technology Consulting Program of Chinese Academy of Engineering(2015-XY-25)the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2014BAD02B06-02)+2 种基金the Special Fund for Agro-scientific Research in Public Interest of China(201303095)the Basic Research Foundation of Shenyang Science and Technology Program,China(F16-205-1-38)the Program for Changjiang Scholars and Innovative Research Team in University,China(IRT13079)
文摘The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of straw and biochar addition on soil nitrogen form, carbon storage, and super rice yield in cold waterlogged paddy soils. We performed field trials with four treatments including conventional fertilization system (CK), straw amendment 6 t ha^-1 (S), biochar amendment 2 t ha^-1 (C1), and biochar amendment 40 t ha^-1 (C2). The super japonica rice variety, Shennong 265, was selected as the test Crop. The results showed that the straw and biochar amendments improved total nitrogen and organic carbon content of the soil, reduced N2O emissions, and had little influence on nitrogen retention, nitrogen density, and CO2 emissions. The S and C1 increased NH4^+-N content, and C2 increased NO3^--N content. Both S and C1 had little influence on soil organic carbon density (SOCD) and C/N ratio. However, C2 greatly increased SOCD and C/N ratio. C1 and C2 significantly improved the soil carbon sequestration (SCS) by 62.9 and 214.0% (P〈0.05), respectively, while S had no influence on SCS. C1 and C2 maintained the stability of super rice yield, and significantly reduced CH4 emissions, global warming potential (GWP), and greenhouse gas intensity (GHGI), whereas S had the opposite and negative effects. In summary, the biochar amendments in cold waterlogged paddy soils of North China increased soil nitrogen and carbon content, improved soil carbon sequestration, and reduced GHG emission without affecting the yield of super rice.
基金financially supported by the Scientific Research Start-up Funds for Openly-Recruited Doctors (GAU-KYQD-2018-39)the National Natural Science Foundation of China (31571594, 41661049)the National Science and Technology Supporting Program of China (2015BAD22B04-03)
文摘Soil tillage and straw retention in dryland areas may affect the soil aggregates and the distribution of total organic carbon. The aims of this study were to establish how different tillage and straw retention practices affect the soil aggregates and soil organic carbon(SOC) and total nitrogen(TN) contents in the aggregate fractions based on a long-term(approximately 15 years) field experiment in the semi-arid western Loess Plateau, northwestern China. The experiment included four soil treatments, i.e., conventional tillage with straw removed(T), conventional tillage with straw incorporated(TS), no tillage with straw removed(NT) and no tillage with straw retention(NTS), which were arranged in a complete randomized block design. The wet-sieving method was used to separate four size fractions of aggregates, namely, large macroaggregates(LA, >2000 μm), small macroaggregates(SA, 250–2000 μm), microaggregates(MA, 53–250 μm), and silt and clay(SC, <53 μm). Compared to the conventional tillage practices(including T and TS treatments), the percentages of the macroaggregate fractions(LA and SA) under the conservation tillage practices(including NT and NTS treatments) were increased by 41.2%–56.6%, with the NTS treatment having the greatest effect. For soil layers of 0–5, 5–10 and 10–30 cm, values of the mean weight diameter(MWD) under the TS and NTS treatments were 10.68%, 13.83% and 17.65%, respectively. They were 18.45%, 19.15% and 14.12% higher than those under the T treatment, respectively. The maximum contents of the aggregate-associated SOC and TN were detected in the SA fraction, with the greatest effect being observed for the NTS treatment. The SOC and TN contents were significantly higher under the NTS and TS treatments than under the T treatment. Also, the increases in SOC and TN levels were much higher in the straw-retention plots than in the straw-removed plots. The macroaggregates(including LA and SA fractions) were the major pools for SOC and TN, regardless of tillage practices, storing 3.25–6.81 g C/kg soil and 0.34–0.62 g N/kg soil. Based on the above results, we recommend the NTS treatment as the best option to boost soil aggregates and to reinforce carbon and nitrogen sequestration in soils in the semi-arid western Loess Plateau of northwestern China.
基金Key Project of Shanghai Basic Research,China (No. 08JC1400500)Program for New Century Excellent Talents in University,China (No. NECT-07-0175)+1 种基金Key Project of Chinese Ministry of Education,China (No. 107046)Shanghai Leading Academic Discipline Project,China (No. B604)
文摘Activated carbons,RS-1,RS-2,and RS-3,prepared from rice straw with(NH4)2HPO4 activation were used as adsorbents for removing phenols from aqueous solutions.The maximum adsorption capacities of phenol for RS-1,RS-2,and RS-3 were 163.9,172.9,and 200.0 mg/g,respectively.The equilibrium data were analyzed by the Langmuir,Freundlich,and Temkin models.It displayed that Langmuir isotherm fitted to the results best.The dimensionless parameter RL indicated the favorable nature of the adsorption of phenol.Otherwise,the kinetic rates were well explained by pseudo-second-order model.According to the results,activated carbon derived from waste rice straw can be a high-performance adsorbent for wastewater treatment.
基金supported by the National Key Research and Development Program of China(2017YFD0200801 and 2017YFD0300602)the National Natural Science Foundation of China(41471196)+1 种基金the Science and Technology Development Project of Jilin Province,China(20170101162JC)the Science and Technology Project of the Education Department of Jilin Province,China(JJKH20170313KJ)
文摘Straw return has been strongly recommended in China,whereas applying biochar into soil is considered to provide more benefits for agriculture as well as the environment.In this study,a five-year(2011-2015) field experiment was conducted to evaluate the effects of uncharred maize straw amendment(MS) and charred maize straw amendment(charred MS) on organic carbon(C) contents in bulk soil and in various soil aggregate-size and density fractions.Compared to no amendment(CK),the bulk soil organic C content significantly improved by 9.30% for MS and by 23.4% for charred MS.Uncharred and charred maize straw applied annually at a consistent equal-C dosage resulted in 19.7 and 58.2% organic C sequestration efficiency in soil,respectively,after the five years of the field experiment.The percentages of macroaggregates(>0.25 mm) and occluded microaggregates(0.25-0.053 mm) obviously increased by 7.73 and 18.1% for MS and by 10.7 and 19.6% for charred MS,respectively.Moreover,significant incremental increases of 19.4 and 35.0% in macroaggregate-associated organic C occurred in MS and charred MS,respectively.The occluded microaggregates associated organic C significantly increased by 21.7% for MS and 25.1% for charred MS.Mineral-associated organic C(<0.053 mm) inside the macroaggregates and the occluded microaggregates obviously improved by 24.7 and 33.3% for MS and by 18.4 and 44.9% for charred MS.Organic C associated with coarse particulate organic matter(POM) within the macroaggregates markedly increased by 65.1 and 41.2% for MS and charred MS,respectively.Charred MS resulted in a noteworthy increment of 50.4% for organic C associated with heavy POM inside the occluded microaggregates,whereas charred MS and MS observably improved organic C associated with heavy POM inside the free microaggregates by 36.3 and 20.0%,respectively.These results demonstrate that uncharred and charred maize straw amendments improve C sequestration by physically protecting more organic C in the macroaggregates and the occluded microaggregates.Compared to the feedstock straw amendment,charred maize straw amendment is more advantageous to C sequestration.
文摘On the basis of expounding the status quo and using developmental trend of China's straw,4 indices are selected:straw yield,planting area,using amount of fertilizer and effective irrigation area.According to the relevant data of China Statistical Yearbook from 1991 to 2008,by using linear regression model,we calculate China's rural straw yield,analyze the factors impacting straw yield,and point out that the using amount of fertilizer is the important factor impacting straw yield.Based on these,in the perspective of low-carbon agricultural economy,we put forward suggestions of using straw comprehensively from 4 perspectives in order to provide theoretical reference for decision-makers:improve fertilizer dependence;develop straw reuse technology;popularize the technology of straw gasification actively;strengthen farmers' low-carbon awareness.
基金Funded by Key Projects of the National Science&Technology Pillar Program(No.2013BAC13B01)Independent Research of State Key Laboratory of Silicate Materials for Architectures
文摘The semi-carbonization method is a kind of waste treatment to carbonize rice straw fiber at low semi-carbon temperature. The rice straw fiber is carbonized incompletely, which serves as building materials additive. The results reveal that the optimized carbonization condition is at 313 ℃ for 20-40 min with H3PO4 as activator. The structure of semi-carbonized straw fiber displays a large quantity of micropores, with which the wall thickness and the pore diameter are in the range of 1-4 μm, presenting the iodine sorption value of 1 320-1 470 mL/g and the methylene blue sorption value of 1 330-1 460 mg/g, respectively. Moreover, the acidic oxygen-containing groups impart the structure higher sorption of polar molecules. The semi-carbonized rice straw fiber with open and closed micro-mesopores demonstrates good hygroscopicity, implying the potential application as a functional additive in building materials.
基金supported by the National Natural Science Foundation of China(31270633)State Key Laboratory of Pulp and Paper Engineering(201512)Hangzhou Qianjiang Distinguished Experts Programme of China
文摘In this study,rice straw(RS) was liquefied by ethylene carbonate(EC) using H_2SO_4 as a catalyst.The effects of various process conditions on the liquefaction characteristics were investigated by FT-IR and residue content analysis.The results show that cellulose and lignin are degraded during the liquefaction process and large amounts of groups are generated.In addition,it is difficult to effectively liquefy RS by using EC alone as the liquefying agent without other additives.Compared to water addition on liquefaction,the residue content can be significantly reduced up to 30% by adding H_2O_2.It has also been proved that the liquor ratio(RS/EC,w/v) of 1∶5 with H_2O_2 as an additive at 145℃ for liquefaction time of 60 min in the presence of H_2SO_4 can accelerate the liquefaction process and high liquefaction yield can be obtained.