期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
A combination of straw incorporation and polymer-coated urea offsets soil ammonia and nitrous oxide emissions in winter wheat fields
1
作者 Xiaoyun Wang Yajie Tian +3 位作者 Qianhui Zhang Zhengxin Zhao Rui Wang Huanjie Cai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1718-1736,共19页
The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Nort... The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Northwest China.We conducted a two-year field experiment to assess the effects of combining SI with either uncoated urea(U)or PCU on soil NH_(3)emissions,N_(2)O emissions,winter wheat yields,yield-scaled NH_(3)(/NH_(3)),and yield-scaled N_(2)O(/N_(2)O).Five treatments were investigated,no nitrogen(N)fertilizer(N_(0)),U application at 150 kg N ha-1 with and without SI(SI+U and S_(0)+U),and PCU application at 150 kg N ha^(-1) with and without SI(SI+PCU and S_(0)+PCU).The results showed that the NH_(3);emissions increased by 20.98-34.35%following Sl compared to straw removal,mainly due to increases in soil ammonium(NH_(4)^(+)-N)content and water-flled pore space(WFPS).SI resulted in higher N_(2)O emissions than under the So scenario by 13.31-49.23%due to increases in soil inorganic N(SIN)contents,WFPS,and soil microbial biomass.In contrast,the PCU application reduced the SIN contents compared to the U application,reducing the NH_(3)and N_(2)O emissions by 45.99-58.07 and 18.08-53.04%,respectively.Moreover,no significant positive effects of the SI or PCU applications on the winter wheat yield were observed.The lowest /NH_(3) and /N_(2)O values were observed under the S_(0)+PCU and SI+PCU treatments.Our results suggest that single PCU applications and their combination with straw are the optimal agricultural strategies for mitigating gaseous N emissions and maintaining optimal winter wheat yields in Northwest China. 展开更多
关键词 straw incorporation polymer-coated urea NH_(3)and N_(2)O emissions winter wheat yields
下载PDF
Impacts of Fertilization Alternatives and Crop Straw Incorporation on N_2O Emissions from a Spring Maize Field in Northeastern China 被引量:12
2
作者 YANG Li WANG Li-gang +2 位作者 LI Hu QIU Jian-jun LIU Hui-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第4期881-892,共12页
Spring maize is one of the most popular crops planted in northeastem China. The cropping systems involving spring maize have been maintaining high production through intensive management practices. However, the high r... Spring maize is one of the most popular crops planted in northeastem China. The cropping systems involving spring maize have been maintaining high production through intensive management practices. However, the high rates of nitrogen (N) fertilizers application could have introduced a great amount of nitrous oxide (N2O) into the atmosphere. It is crucial for sustaining the maize production systems to reduce N2O emissions meanwhile maintaining the optimum yields by adopting alternative farming management practices. The goal of this study was to evaluate effects of alternative fertilization and crop residue management practices on N2O emission as well as crop yield for a typical maize field in northeastern China. Field experiments were conducted during the 2010-2011 maize growing seasons (from early May to late September) in Liaoning Province, northeastern China. N2O fluxes were measured at the field plots with six different treatments including no N fertilizer use (CK), farmers' conventional N fertilizer application rate (FP), reduced N fertilizer rate (OPT), reduced N fertilizer rate combined with crop straw amendment (OPTS), slow-release N fertilizer (CRF), and reduced N fertilizer rate combined with nitrification inhibitor (OPT+DCD). The static chamber method combined with gas chromatography technique was employed to conduct the measurements of N2O fluxes. The field data showed that N2O emissions varied across the treatments. During the maize growing season in 2010, the total N2O emissions under the treatments of CK, FP, OPT, OPTS, and CRF were 0.63, 1.11, 1.03, 1.26, and 0.98 kg N ha-1, respectively. The seasonal cumulative N2O emissions were 0.54, 1.07, 0.96, 1.12, and 0.84 kg N ha1, respectively, under CK, FP, OPT, OPTS, and OPT+DCD in 2011. In comparison with FP, CRF or OPT+DCD reduced the N2O emissions by 12 or 21%, respectively, while the crop yields remained unchanged. The results indicate that the reduction of N-fertilizer application rate in combination with the slow-release fertilizer type or nitrification inhibitor could effectively mitigate N2O emissions from the tested field. The incorporation of crop residue didn't show positive effect on mitigating N2O emissions from the tested cropping system. The field study can provide useful information for the on-going debate on alternative N fertilization strategies and crop straw management in China. However, further studies would be needed to explore the long-term impacts of the alternative management practices on a wide range of environmental services. 展开更多
关键词 nitrogen fertilization straw incorporation nitrous oxide crop yield spring maize
下载PDF
Long-term straw incorporation increases rice yield stability under high fertilization level conditions in the rice–wheat system 被引量:4
3
作者 Jianwei Zhang Weiwei Li +4 位作者 Yan Zhou Yanfeng Ding Lei Xu Yu Jiang Ganghua Li 《The Crop Journal》 SCIE CSCD 2021年第5期1191-1197,共7页
Straw incorporation is a global common practice to improve soil fertility and rice yield.However,the effect of straw incorporation on rice yield stability is still unknown,especially under high fertilization level con... Straw incorporation is a global common practice to improve soil fertility and rice yield.However,the effect of straw incorporation on rice yield stability is still unknown,especially under high fertilization level conditions.Here,we reported the effect of straw returning on rice yield and yield stability under high fertilization levels in the rice–wheat system over nine years.The results showed that straw incorporation did not significantly affect the average rice yield of nine years.Straw incorporation reduced the coefficient of variation of rice yield by 25.8%and increased the sustainable yield index by 8.2%.The rice yield positively correlated with mean photosynthetically active radiation (PAR) of rice growth season and the effects of straw incorporation on rice yield depended on the PAR.Straw incorporation increased the rice yield by 5.4%in the low PAR years,whereas it did not affect the rice yield in the high PAR years.Long-term straw incorporation lowered soil bulk density but improved the soil organic matter,total N,available N,available P,and available K more strongly than straw removal.Our findings suggest that straw incorporation can increase rice yield stability through improving the resistance of rice plant growth to low PAR. 展开更多
关键词 Long-term straw incorporation Rice yield STABILITY Rice-wheat system PAR
下载PDF
Effects of long-term straw incorporation on nematode community composition and metabolic footprint in a rice–wheat cropping system 被引量:3
4
作者 CHEN Yun-feng XIA Xian-ge +4 位作者 HU Cheng LIU Dong-hai QIAO Yan LI Shuang-lai FAN Xian-peng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第8期2265-2276,共12页
Soil nematode communities can provide valuable information about the structure and functions of soil food webs,and are sensitive to agricultural practices,including short-term straw incorporation.However,currently,suc... Soil nematode communities can provide valuable information about the structure and functions of soil food webs,and are sensitive to agricultural practices,including short-term straw incorporation.However,currently,such effects under longterm straw incorporation conditions at different fertility levels are largely unknown.Thus,we conducted a 13-year ongoing experiment to evaluate the effects of long-term straw incorporation on the structure and functions of the soil food web in low and high fertility soils through analyzing its effects on nematode communities,food web indices and metabolic footprints.Four treatments were included:straw removal(–S)under non-fertilized(–NPK)or fertilized(+NPK)conditions;and straw incorporation(+S)under–NPK or+NPK conditions.Soil samples from a 0–20 cm depth layer were collected when wheat and rice were harvested.Compared with straw removal,straw incorporation increased the abundances of total nematodes,bacterivores,plant-parasites and omnivores-predators,as well the relative abundances of omnivores-predators with increases of 73.06,89.29,95.31,238.98,and 114.61%in–NPK soils and 16.23,2.23,19.01,141.38,and 90.23%in+NPK soils,respectively.Regardless of sampling times and fertilization effects,straw incorporation increased the diversity and community stability of nematodes,as indicated by the Shannon-Weaver diversity index and maturity index.Enrichment and structure index did not show significant responses to straw incorporation,but a slight increase was observed in the structure index.The analysis of nematode metabolic footprints showed that straw incorporation increased the plant-parasite footprint and structure footprint by 97.27 and 305.39%in–NPK soils and by 11.29 and 149.56%in+NPK soils,but did not significantly influence enrichment,bacterivore and fungivore footprints.In conclusion,long-term straw incorporation,particularly under a low fertility level,favored the soil nematodes and regulated the soil food web mainly via a top-down effect. 展开更多
关键词 soil nematodes community composition metabolic footprint straw incorporation rice-wheat cropping system top-down effect
下载PDF
Differential Responses of Soil Organic Carbon Fractions and Carbon Turnover Related Enzyme Activities to Wheat Straw Incorporation in Subtropical China
5
作者 Wei Dai Kaikai Fang +4 位作者 Hui Gao Jun Wang Petri Penttinen Zhimin Sha Linkui Cao 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第1期169-183,共15页
Soil organic carbon(SOC)fractions and C turnover related enzyme activities are essential for nutrient cycling.This is because they are regarded as important indicators of soil fertility and quality.We measured the eff... Soil organic carbon(SOC)fractions and C turnover related enzyme activities are essential for nutrient cycling.This is because they are regarded as important indicators of soil fertility and quality.We measured the effects of wheat straw incorporation on SOC fractions and C turnover related enzyme activities in a paddy field in subtropical China.Soil samples were collected from 0-10 cm and 10-20 cm depths after rice harvesting.The total SOC concentrations were higher in the high rate of wheat straw incorporation treatment(NPKS2)than in the not fertilized control(CK)(P<0.05).The concentrations of labile C fractions[i.e.,water soluble organic C(WSOC),hot-water soluble organic C(HWSOC),microbial biomass C(MBC),and easily oxidizable C(EOC)],were higher in the moderate NPKS1 and NPKS2 treatments than in CK and the fertilized treatment without straw(NPK)(P<0.05).The geometric means of labile C(GMC)and C pool management index(CPMI)values were highest in NPKS2(P<0.05).The SOC concentrations correlated positively with the labile C fractions(P<0.05).Soil cellulase activity and the geometric mean of enzyme activities(GMea)were higher in NPKS2 than in CK in all soil layers(P<0.05),and the invertase activity was higher in NPKS2 than in CK in the 0-10 cm layer(P<0.05).Stepwise multiple linear regression indicated that the formation of the SOC,WSOC,HWSOC,MBC,and EOC was mostly enhanced by the cellulase and invertase activities(P<0.05).Therefore,the high rate of wheat straw incorporation may be recommended to increase soil C pool levels and soil fertility in subtropical paddy soils. 展开更多
关键词 Wheat straw incorporation soil organic carbon fractions soil carbon turnover related enzymes paddy soil subtropical China
下载PDF
Impact of agricultural intensification on soil organic carbon" A study using DNDC in Huantai County, Shandong Province, China 被引量:3
6
作者 LIAO Yan WU Wen-liang +1 位作者 MENG Fan-qiao LI Hu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第6期1364-1375,共12页
Using the biogeochemical model den itrification/decomposition (DN DC), the dynamic changes of soil organic carbon (SOC) of farmland from the 1980s to 2030s were investigated in Huantai County, a typical intensive ... Using the biogeochemical model den itrification/decomposition (DN DC), the dynamic changes of soil organic carbon (SOC) of farmland from the 1980s to 2030s were investigated in Huantai County, a typical intensive agricultural region in the Huang- Huai-Hai Plain of China. Prior to modelling, validation of the DNDC model against field data sets of SOC from Quzhou Experimental Station in the Huang-Huai-Hai Plain was conducted at the site scale. We compared the simulated results with the observed SOC in Huantai County during 1982-2011 under two different classification methods of simulation unit (the first method integrated soil type and land use of Huantai County to form the overlapped modeling units; the second selected the 11 administrative towns as the modeling units), and achieved a high accuracy in the model simulation with the improvement of the model parameters. Regional SOC (0-20 cm) density and stocks for Huantai County in the years 2012-2031 were predicted under different scenarios of farming management. Compared with current management practices, optimized fertilization (20% decrease of mineral N), crop straw incorporation (90%) and appropriate animal manure input (40 kg N ha-1 yr-1) could achieve the highest level of SOC density (56.8% higher than 2011) in the period of 2012-2031. The research highlighted the importance of crop straw incorporation, optimized N fertilization and integration of crop production with ani- mal husbandry on the farmland carbon sequestration for maintaining a high land productivity in the Huang-Huai-Hai Plain. 展开更多
关键词 agricultural intensification soil organic carbon DNDC nitrogen fertilizer straw incorporation animal manure
下载PDF
Evaluation of water management on arsenic methylation and volatilization in arsenic-contaminated soils strengthened by bioaugmentation and biostimulation
7
作者 Peng Chen Yi Liu Guo-Xin Sun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第3期515-526,共12页
Arsenic(As) fate in paddy fields has been one of the most significant current issues due to the strong As accumulation potential of rice plants under fooded conditions. However,no attempt was done to explore As methyl... Arsenic(As) fate in paddy fields has been one of the most significant current issues due to the strong As accumulation potential of rice plants under fooded conditions. However,no attempt was done to explore As methylation and volatilization under non-fooded conditions. Herein, we investigated the effects of water management on As methylation and volatilization in three arsenic-contaminated soils enhanced by biostimulation with strawderived organic matter and bioaugmentation with genetic engineered Pseudomonas putida KT2440(GE P. putida). Under fooded conditions, the application of biochar(BC), rice straw(RS)and their combination(BC+RS) increased total As in porewater. However, these effects were greatly attenuated under non-fooded conditions. Compared with RS amendment alone, the combination of GE P. putida and RS further promoted the As methylation and volatilization,and the promotion percentage under non-fooded conditions were significantly higher than that under fooded conditions. The combined GE P. putida and RS showed the highest efficiency in As methylation(88 μg/L) and volatilization(415.4 μg/(kg·year)) in the non-fooded soil with moderate As contamination. Finally, stepwise multiple linear regression analysis presented that methylated As, DOC and p H in porewater were the most important factors contributing to As volatilization. Overall, our findings suggest that combination of bioaugmentation with GE P. putida and biostimulation with RS/BC+RS is a potential strategy for bioremediation of arsenic-contaminated soils by enhancing As methylation and volatilization under non-fooded conditions. 展开更多
关键词 Arsenic methylation Arsenic volatilization Water management straw incorporation BIOAUGMENTATION
原文传递
Soil phosphorus availability and rice phosphorus uptake in paddy fields under various agronomic practices 被引量:6
8
作者 Bingshen JIANG Jianlin SHEN +5 位作者 Minghong SUN Yajun HU Wenqian JIANG Juan WANG Yong LI Jinshui WU 《Pedosphere》 SCIE CAS CSCD 2021年第1期103-115,共13页
Agronomic practices affect soil phosphorus(P) availability, P uptake by plants, and subsequently the efficiency of P use. A field experiment was carried out to investigate the effects of various agronomic practices(st... Agronomic practices affect soil phosphorus(P) availability, P uptake by plants, and subsequently the efficiency of P use. A field experiment was carried out to investigate the effects of various agronomic practices(straw incorporation, paddy water management, nitrogen(N) fertilizer dose, manure application,and biochar addition) on soil P availability(e.g., soil total P(STP), soil available P(SAP), soil microbial biomass P(SMBP), and rice P uptake as well as P use efficiency(PUE)) over four cropping seasons in a rice-rice cropping system, in subtropical central China. Compared to the non-straw treatment(control,using full dose of chemical N fertilizer), straw incorporation increased SAP and SMBP by 9.3%–18.5% and 15.5%–35.4%, respectively;substituting half the chemical N fertilizer dose with pig manure and the biochar application increased STP, SAP, and SMBP by 10.5%–48.3%, 30.2%–236.0%, and 19.8%–72.4%,respectively, mainly owing to increased soil P and organic carbon inputs;adding a half dose of N and no N input(reduced N treatments) increased STP and SAP by 2.6%–7.5% and 19.8%–33.7%, respectively, due to decreased soil P outputs. Thus, soil P availability was greatly affected by soil P input and use. The continuous flooding water regime without straw addition significantly decreased SMBP by 11.4% compared to corresponding treatments under a mid-season drainage water regime. Total P uptake by rice grains and straws at the harvest stage increased under straw incorporation and under pig manure application, but decreased under the reduced N treatments and under biochar application at a rate of 48 t ha-1, compared to the control. Rice P uptake was significantly positively correlated with rice biomass, and both were positively correlated with N fertilizer application rates, SAP, SMBP, and STP. Phosphorus use efficiency generally increased under straw incorporation but decreased under the reduced N treatments and under the manure application(with excessive P input), compared to the control. These results showed that straw incorporation can be used to increase soil P availability and PUE while decreasing the use of chemical P fertilizers. When substituting chemical fertilizers with pig manure, excess P inputs should be avoided in order to reduce P accumulation in the soil as well as the environmental risks from non-point source pollution. 展开更多
关键词 BIOCHAR manure fertilizer nutrient management P use efficiency paddy soil straw incorporation water regime
原文传递
Nitrogen fertilization degrades soil aggregation by increasing ammonium ions and decreasing biological binding agents on a Vertisol after 12 years 被引量:1
9
作者 Zichun GUO Wei LI +3 位作者 Mahbub UL ISLAM Yuekai WANG Zhongbin ZHANG Xinhua PENG 《Pedosphere》 SCIE CAS CSCD 2022年第4期629-636,共8页
Degraded soil aggregation arising from nitrogen(N)fertilization has been reported in many studies;however,the mechanisms have not yet been clarified.Elucidating the impact of N fertilization on soil aggregation would ... Degraded soil aggregation arising from nitrogen(N)fertilization has been reported in many studies;however,the mechanisms have not yet been clarified.Elucidating the impact of N fertilization on soil aggregation would help to improve soil structure and sustain high crop production.The objective of this study was to determine the impact of long-term N fertilization on soil aggregation and its association with binding and dispersing agents.A 12-year(2008–2019)N fertilization field experiment on a Vertisol was performed,covering a wide range of N application rates(0,360,450,540,630,and 720 kg ha-1 year-1)and including straw management(straw return and straw removal)in a wheat(Triticum aestivum L.)-maize(Zea mays L.)cropping system.Soil samples of 0–20 cm depth were collected from 12 field treatments with 3 replications in 2019.Soil aggregate stability(mean weight diameter(MWD))and contents of soil organic carbon(SOC),glomalin-related soil protein(GRSP),microbial biomass carbon(MBC),and mineral N(NH4+and NO3-)were determined.Long-term N fertilization under straw removal conditions reduced soil MWD by 12%–18%at N rates from 0 to 720 kg ha-1 compared to that under straw return(P<0.05).Soil MWD was positively associated with pH(P<0.05)and MBC(P<0.05),but negatively correlated with NH4+(P<0.05)and NO3-(P<0.05).Compared with the straw removal treatment,the straw incorporation treatment significantly improved the contents of aggregating agents(SOC,GRSP,and MBC)(P<0.001),but did not affect that of the dispersing agent(NH4+)(P>0.05);consequently,it improved soil aggregation.Overall,our results indicate that long-term N fertilization may degrade soil aggregation because of the increases in monovalent ions(H+and NH4+)and the decrease in MBC during soil acidification,especially when the applied N dose exceeded 360 kg ha-1 year-1.Our finding can minimize the negative structural impacts on Vertisol. 展开更多
关键词 aggregating agents aggregate stability long-term nitrogen fertilization soil structure straw incorporation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部