For understanding the reasons that caused the degradation of water quality in lower order streams, systematic sampling was conducted at different spatial locations aiong the low order streams (1 st-5th) of Ashihe Ri...For understanding the reasons that caused the degradation of water quality in lower order streams, systematic sampling was conducted at different spatial locations aiong the low order streams (1 st-5th) of Ashihe River continuum in Maoershan Experimental Forest of Northeast Forestry University, Sharlgzhi City, Heilongjiang Province, China. The indexes of stream water quality, i.e., the pH, dissolved oxygen(DO), turbidity, temperature, PO43-P, NO3-N and NH4^+-N concentrations, total dissolved inorganic nitrogen (TDIN-N, including concentrations of NO3^+-N and NH4^+-N), and total phosphorus (inorganic and organic phosphorous, TP) were measured and analyzed. The stream order, related environmental settings and land-use type were recorded for each sampling location. The indexes of stream water quality at different locations with different stream orders and land use types were compared by ANOVA analysis. The indexes of stream water quality at different sampling locations were analyzed by Hierarchical cluster analysis. Result showed that water quality had significant difference in different stream orders and land use types; some locations with different stream features (stream order and land use type) were grouped into same clusters, indicating that random disturbances produced the variations in water quality, which made the spatial variances of stream water quality inconsistent with the general rules.展开更多
Several studies focused on nutrients have shown that land use and management practices have a strong influence on stream chemistry. Much less is known about the relationship between heavy metal concentrations in strea...Several studies focused on nutrients have shown that land use and management practices have a strong influence on stream chemistry. Much less is known about the relationship between heavy metal concentrations in stream water and land use. We compared the variability of trace element concentrations in the stream of a catchment exposed to different types of management practices and land use. This is a small catchment with previous agricultural diffuse and accidental pollution mainly due to the spreading of slurry. The agricultural land was reforested in July 1998. The concentrations of Fe, Mn, Cu and Zn in dissolved phase from surface water samples collected at the catchment outlet were determined over a period of approximately six years. The results suggest that dissolved metal concentrations, especially Cu and Mn, are controlled by the land use and management practices. The median concentrations of studied metals were the highest in the agricultural period. It was also during this period when they all presented the highest concentration peaks, coinciding with a time of heavy application of manure to the soil. Dissolved Fe and Mn showed high dependence of flow rate, whereas Cu and Zn concentrations seemed to be independent of flow.展开更多
To understand the spatial correlations between land use type and water quality of an estuarine island is particularly essential to maintain its original ecological environment. Chongming Island is experiencing a rapid...To understand the spatial correlations between land use type and water quality of an estuarine island is particularly essential to maintain its original ecological environment. Chongming Island is experiencing a rapid urbanization and agriculture land sprawl during the last decades, especially with the growth of agro-industry and the extension of old style residences. As a consequence, surface run-off from agricultural activities and domestic sewage discharge has a various linkage with stream water quality on the island. This study applied ageographical weight regression model approach to recognize the significance of the relationship between water quality and multiple land use. We also evaluated their spatial correlations which normally hidden from other traditional regression methods. The results reveal that the water quality of less-developed areas on Chongming Island was easily affected by land use types compared with other regions, TN, TP, BOD<sub>5</sub>, COD were shown as the most significant responses among all the water quality indicators. Green land and water area had a reduced effect on nutrients, expansion of industrial land would continuously make a contribution of pollutants to the water environment. Suggestions should therefore be taken into consideration during the process of development planning, in order to prevent water contamination.展开更多
This paper analyzes the monitored data of the 4 times of stream water conveyances to the river section where the stream flow was cut-off, of 9 groundwater-monitoring sections and 18 vegetation plots in the lower reach...This paper analyzes the monitored data of the 4 times of stream water conveyances to the river section where the stream flow was cut-off, of 9 groundwater-monitoring sections and 18 vegetation plots in the lower reaches of Tarim River. The results show that the groundwater depth in the lower reaches of Tarim River rose from 9.87 m before the conveyances to 7.74 m and 3.79 m after the first and second conveyances, 3.61 and 3.16 m after the 2 phases of the third conveyance, and 2.66 m after the fourth conveyance. The transverse response scope of groundwater level was gradually enlarged along both sides of the channel of conveyances, i.e., from 450 m in width after the first conveyance to 1050 m after the fourth conveyance, but the response degree of groundwater level was reduced with the increase of the distance away from the channel of conveyances. The composition, distribution and growth status of the natural vegetation are directly related to the groundwater depth. The indexes of Simpson’s biodiversity, McIntosh’s evenness and Margalef’s richness, which reflect the change of the quantity of species and the degree of biodiversity, are reduced from 0.70, 0.48 and 0.90 to 0.26, 0.17 and 0.37 re- spectively along with the drawdown of groundwater level from the upper reaches to the lower reaches. After the stream water conveyances, the natural vegetation in the lower reaches is saved and restored along with the rise of groundwater level, the response scope of vegetation is gradually enlarged, i.e., from 200— 250 m in width after the first conveyance to 800 m after the fourth conveyance. However, there is still a great disparity to the objective of protecting the “Green Corridor”in the lower reaches of Tarim River. Thus, it is suggested to convey the stream water in double-channel way, combine the conveyance with water supply in surface scope, or construct the modern pipe-conveyance network systems so as to save the natural vegetation in an intensive way, achieve the efficient water consumption and speed up the restoration and re- generation of the damaged ecosystems in the lower reaches of Tarim River.展开更多
Diurnal minor and trace elements in glacial outflow water draining the Qiyi Glacier and associated hydrological controls as well as the filtration effects on water chemistry were examined. Results show that major ions...Diurnal minor and trace elements in glacial outflow water draining the Qiyi Glacier and associated hydrological controls as well as the filtration effects on water chemistry were examined. Results show that major ions, Li, St, and Ba are exported pre- dominately as mobile monovalent or divalent ions and are controlled by hydrological variations over the diurnal cycle exhibit- ing an inverse concentration with discharge, suggesting that Li, Sr, and Ba can be used as tracers in subglacial hydrological investigations. Conversely, other elements (e.g. Fe, Al, and Cr) exhibit variations that are not strongly correlated with the dis- charge reflecting the physicochemical controls. The non-filtered operation appears not to strongly influence Sr and Ba, but has an effect on some elements such as Fe, Al, V, Ti, and Co, indicating that these changed elements are transported in particulate forms and thus their concentrations are highly dependent on particulate numbers in solutions. This implies that the immediate filtration after sampling is essential in hydrochemical studies at Alpine glacial basins due to subsequent mineral dissolution.展开更多
The EC (electrical conductivity), pH and concentrations of major anions, cations and dissolved silica were determined in the stream meltwater draining from the glacier. Stream meltwater samples were sampled during Jun...The EC (electrical conductivity), pH and concentrations of major anions, cations and dissolved silica were determined in the stream meltwater draining from the glacier. Stream meltwater samples were sampled during June and October 1997 from Dudu glacier, Bhngirathi valley, Garhwal Himalaya. This study is an attempt to reveal the hydrochemical processes operating in the glacialized regime of Garhwal Himalaya. The results show that the abundance order of cations and anions in the meltwater is c(Ca2+ )>c(Na+ )>c(Mg2+ ) >c(K+ ) and c(SO42- ) >c>(HCO3-) >c(NO3- ) >c(CI- ). The rock weathering is the most important mechanism controlling the water chemistry in the basin. Pyrite oxidation and carbonation are the main hydrogen ion supply reactions contributing to the chemical weathering in the basin. There is a distinct difference between the solute concentrations in samples collected during June and October.展开更多
Water table over an arid region can be elevated to a critical level to sustain terrestrial ecosystem along the natural channel by the stream water conveyance. Estimation of water table depth and soil moisture on river...Water table over an arid region can be elevated to a critical level to sustain terrestrial ecosystem along the natural channel by the stream water conveyance. Estimation of water table depth and soil moisture on river channel profile may be reduced to a two-dimensional moving boundary problem with soil water-groundwater interaction. The two-dimensional soil water flow with stream water transferred is divided into an unsaturated vertical soil water flow and a horizontal groundwater flow. Therefore, a prediction model scheme for water table depths under the interaction between soil water and groundwater with stream water transferred is presented, which includes a vertical soil water movement model, a horizontal groundwater movement model, and an interface model. The synthetic experiments are conducted to test the sensitivities of the river elevation, horizontal conductivity, and surface flux, and the results from the experiments show the robustness of the proposed scheme under different conditions. The groundwater horizontal conductivity of the proposed scheme is also calibrated by SCE-UA method and validated by data collected at the Yingsu section in the lower reaches of the Tarim River, which shows that the model can reasonably simulate the water table depths.展开更多
An improved method for trace level quantification of dicyandiamide in stream water has been developed. This method includes sample pretreatment using solid phase extraction.The extraction procedure(including loading,...An improved method for trace level quantification of dicyandiamide in stream water has been developed. This method includes sample pretreatment using solid phase extraction.The extraction procedure(including loading, washing, and eluting) used a flow rate of1.0 m L/min, and dicyandiamide was eluted with 20 m L of a methanol/acetonitrile mixture(V/V = 2:3), followed by pre-concentration using nitrogen evaporation and analysis with high performance liquid chromatography–ultraviolet spectroscopy(HPLC–UV). Sample extraction was carried out using a Waters Sep-Pak AC-2 Cartridge(with activated carbon).Separation was achieved on a ZIC-Hydrophilic Interaction Liquid Chromatography(ZIC-HILIC)(50 mm × 2.1 mm, 3.5 μm) chromatography column and quantification was accomplished based on UV absorbance. A reliable linear relationship was obtained for the calibration curve using standard solutions(R^2〉 0.999). Recoveries for dicyandiamide ranged from 84.6% to 96.8%, and the relative standard deviations(RSDs, n = 3) were below 6.1% with a detection limit of 5.0 ng/m L for stream water samples.展开更多
Xiayun Township watershed in the upper reaches of Hongfeng Lake is selected to study the relationship between stream grade and water quality.Turbidity and ammonium nitrogen concentration are obviously related to the s...Xiayun Township watershed in the upper reaches of Hongfeng Lake is selected to study the relationship between stream grade and water quality.Turbidity and ammonium nitrogen concentration are obviously related to the stream grade,generally speaking,are positively correlated,and the water quality is degrading from the upper reaches to the lower reaches.In the future,the influence of different land use types on the water quality should be fully analyzed on the basis of enhancing the water quality monitoring to provide supports for effectively controlling non-point source pollutions and treating the water environment of Hongfeng Lake.展开更多
In this study conducted in the coastal zone of Cameroon, biological indices and functional feeding groups of benthic macroinvertebrates were used to assess the health status of two urban streams. For a better diagnosi...In this study conducted in the coastal zone of Cameroon, biological indices and functional feeding groups of benthic macroinvertebrates were used to assess the health status of two urban streams. For a better diagnosis, two streams located in coastal forest zone were used as a reference. Benthic macroinvertebrates were sampled monthly over a 3-month period (from May to July 2017) in six urban stations and six forest stations. Measurements of the physicochemical variables were done simultaneously. Physicochemical analysis revealed that urban streams are strongly polluted with high content of decaying organic matters, while forest streams are slightly polluted as indicated by the Principal Component Analysis. Concerning benthic macroinvertebrates, urban streams are poorly diversified with the proliferation of taxa tolerant to water pollution and belonging to the functional feeding groups of collectors-gatherers. Inversely, forest streams are more diversified and dominated by sensitive taxa, most belonging to the functional feeding groups of predators and shredders. These marked differences between biological indices and feeding mode of benthic macroinvertebrates in forest and urban rivers confirm the reliability of benthic macroinvertebrates as good indicators of freshwater ecosystem in the coastal zone of Cameroon.展开更多
Based on a detailed environmental investigation of the whole Qingshui Stream catchments,samples of water and surface sediments were collected at 15 different places from the upper to the lower reaches of Qingshui Stre...Based on a detailed environmental investigation of the whole Qingshui Stream catchments,samples of water and surface sediments were collected at 15 different places from the upper to the lower reaches of Qingshui Stream,and samples of suspended matter were obtained by filtrating the water samples. The concentrations of heavy metals (Cd,Cu and Zn) were measured in filtered water,suspended matter,and surface sediment by ICP-AES. The results show that the concentrations of the three heavy metals in filtered water are 0.18,6.6 and 17.67 μg/L,lower than that of the Fresh Water Quality Criteria (US EPA) and those of the plain urban rivers,but the contents of Cd,Cu and Zn are much higher than the mean values of rivers in the world and the background value in Jialing River basin. The heavy metals concentrations in the suspended matter from Qingshui Stream are 2.08,438.14 and 1 348.05 mg/kg,much higher than the corresponding background values of soils in Chongqing city. The heavy metals concentrations in the surface sediment from Qingshui Stream are 0.84,189.75 and 838.23 mg/kg,and the values of index of geoaccumulation Igeo of Cd,Cu and Zn show that their pollution degrees are moderate. The heavy metals exist in three transferable forms such as water,suspended matter and surface sediment in Qingshui Stream. The heavy metals concentrations in water are the lowest,and those in the suspended matter are the highest,so the ecological risk in suspended matter is the highest. The distribution tendencies of three metals in water,suspended matter and surface sediment in main riverbed are different.展开更多
Based on the linear wave, solitary wave and fifth order stokes wave derived by use of the Unified Variational Principle of Water Gravity Wave (UVPWGW), this paper derives stream function wave theory by using UVPWGW. T...Based on the linear wave, solitary wave and fifth order stokes wave derived by use of the Unified Variational Principle of Water Gravity Wave (UVPWGW), this paper derives stream function wave theory by using UVPWGW. This paper will handle the Kinematic Free Surface Boundary Condition (KFSBC) and Dynamic Free Surface Boundary Condition (DFSBC) directly and give the optimum solution, instead of the conditions Sigma(Q(av) - Q(i))(2) = min, and the related equations of stational condition. When the wave height H, period T and water depth D are given, the original stream function wave will be determined, and can not be adjusted if it does not agree with the real case; in the present method, the adjustment can be done by adding several constraint conditions, for example, the wave profile can be adjusted according to the condition of accurate peak position. The examples given in this paper show that for the original stream function wave, the DFSBC can be fairly well satisfied, but the KFSBC can not; however, the stream function wave derived by UVPWGW is better than the original one in the sense of minimum error squares in the aspect of the level at which KFSBC and DFSBC are satisfied.展开更多
Heavy metal pollution from both anthropogenic and natural processes can have significant effect on environmental quality of stream and river systems. However, in Ghana, heavy metal pollution of waterbodies is attribut...Heavy metal pollution from both anthropogenic and natural processes can have significant effect on environmental quality of stream and river systems. However, in Ghana, heavy metal pollution of waterbodies is attributed mainly to mining activities but the role of natural mechanisms in altering stream water and sediment quality in relation to heavy metals has received little attention. Spatial and temporal variation in water quality parameters and heavy metal concentrations in water and sediments were studied comparatively in a river and two streams in a gold-rich watershed impacted by heavy mining activities. Samples were collected monthly over a twelve-month period from November 2010 to October 2011 from upstream (unmined) and downstream (mined) sections of the studied streams. Parameters measured include temperature, dissolved oxygen, conductivity, pH, turbidity, colour, mercury (Hg) and arsenic. High spatial variability of water quality parameters was found. Hg concentrations in water were extremely low in both upstream and downstream areas. Maximum geochemical background levels of Hg in unmined pristine areas were 2.45 mg/g whilst arsenic was 29.10 mg/g. By contrast, gold-mined downstream areas recorded Hg and arsenic concentrations of 8.75 mg/g and 82.53 mg/g in stream sediments respectively. Levels of Hg and arsenic in sediments were several orders of magnitude greater than concentrations in surface water in downstream sections and this may be explained by substances originating from mining activities, upstream transport or remobilized sedimented materials in the overlying water column. Our study showed that both natural and human activities may contribute to heavy metal pollution in the highly mineralized watershed of the Pra River Basin. Human factors are however likely to amplify the natural background levels of heavy metals.展开更多
Based on the first linearized Boussincsq equation, the analytical solution of the transient groundwater model, which is used for describing phreatic flow in a semiinfinite aquifer bounded by a linear stream and subjec...Based on the first linearized Boussincsq equation, the analytical solution of the transient groundwater model, which is used for describing phreatic flow in a semiinfinite aquifer bounded by a linear stream and subjected to time-dependent vertical seepage, is derived out by Laplace transform and the convolution integral. According to the mathematical characteristics of the solution, different methods for estimating aquifer parameters are constructed to satisfy different hydrological conditions. Then, tile equation for estimating water exchange between stream and aquifer is proposed, and a recursion equation or estimating the intensity of phreatic evaporation is also proposed. A phreatic aquifer stream system located in Huaibei Plain, Anhui Province, China, is taken as an example to demonstrate tile estimation process of the methods stated herein.展开更多
The SWAT model was used to predict total phosphorus (TP) loadings for a 1555-ha karst watershed—Chapel Branch Creek (CBC)—which drains to a lake via a reservoir-like embayment (R-E). The model was first tested for m...The SWAT model was used to predict total phosphorus (TP) loadings for a 1555-ha karst watershed—Chapel Branch Creek (CBC)—which drains to a lake via a reservoir-like embayment (R-E). The model was first tested for monthly streamflow predictions from tributaries draining three potential source areas as well as the downstream R-E, followed by TP loadings using data collected March 2007-October 2009. Source areas included 1) a golf course that received applied wastewater, 2) urban areas, highway, and some agricultural lands, and 3) a cave spring draining a second golf course along with agricultural and forested areas, including a substantial contribution of subsurface water via karst connectivity. SWAT predictions of mean monthly TP loadings at the first two source outlets were deemed reasonable. However, the predictions at the cave spring outlet were somewhat poorer, likely due to diffuse variable groundwater flow from an unknown drainage area larger than the actual surface watershed, for which monthly subsurface flow was represented as a point source during simulations. Further testing of the SWAT model to predict monthly TP loadings at the R-E, modeled as a completely mixed system, resulted in their over-predictions most of the months, except when high lake water levels occurred. The mean monthly and annual flows were calibrated to acceptable limits with the exception of flow over-prediction when lake levels were low and surface water from tributaries disappeared into karst connections. The discrepancy in TP load predictions was attributed primarily to the use of limited monthly TP data collected during baseflow in the embayment. However, for the 22-month period, over-prediction of mean monthly TP load (34.6 kg/mo) by 13% compared to measured load (30.6 kg/mo) in the embayment was deemed acceptable. Simulated results showed a 42% reduction in TP load due to settling in the embayment.展开更多
基金This research was supported by a grant of the National Nature Science Foundation of China (No. 30370277).
文摘For understanding the reasons that caused the degradation of water quality in lower order streams, systematic sampling was conducted at different spatial locations aiong the low order streams (1 st-5th) of Ashihe River continuum in Maoershan Experimental Forest of Northeast Forestry University, Sharlgzhi City, Heilongjiang Province, China. The indexes of stream water quality, i.e., the pH, dissolved oxygen(DO), turbidity, temperature, PO43-P, NO3-N and NH4^+-N concentrations, total dissolved inorganic nitrogen (TDIN-N, including concentrations of NO3^+-N and NH4^+-N), and total phosphorus (inorganic and organic phosphorous, TP) were measured and analyzed. The stream order, related environmental settings and land-use type were recorded for each sampling location. The indexes of stream water quality at different locations with different stream orders and land use types were compared by ANOVA analysis. The indexes of stream water quality at different sampling locations were analyzed by Hierarchical cluster analysis. Result showed that water quality had significant difference in different stream orders and land use types; some locations with different stream features (stream order and land use type) were grouped into same clusters, indicating that random disturbances produced the variations in water quality, which made the spatial variances of stream water quality inconsistent with the general rules.
文摘Several studies focused on nutrients have shown that land use and management practices have a strong influence on stream chemistry. Much less is known about the relationship between heavy metal concentrations in stream water and land use. We compared the variability of trace element concentrations in the stream of a catchment exposed to different types of management practices and land use. This is a small catchment with previous agricultural diffuse and accidental pollution mainly due to the spreading of slurry. The agricultural land was reforested in July 1998. The concentrations of Fe, Mn, Cu and Zn in dissolved phase from surface water samples collected at the catchment outlet were determined over a period of approximately six years. The results suggest that dissolved metal concentrations, especially Cu and Mn, are controlled by the land use and management practices. The median concentrations of studied metals were the highest in the agricultural period. It was also during this period when they all presented the highest concentration peaks, coinciding with a time of heavy application of manure to the soil. Dissolved Fe and Mn showed high dependence of flow rate, whereas Cu and Zn concentrations seemed to be independent of flow.
文摘To understand the spatial correlations between land use type and water quality of an estuarine island is particularly essential to maintain its original ecological environment. Chongming Island is experiencing a rapid urbanization and agriculture land sprawl during the last decades, especially with the growth of agro-industry and the extension of old style residences. As a consequence, surface run-off from agricultural activities and domestic sewage discharge has a various linkage with stream water quality on the island. This study applied ageographical weight regression model approach to recognize the significance of the relationship between water quality and multiple land use. We also evaluated their spatial correlations which normally hidden from other traditional regression methods. The results reveal that the water quality of less-developed areas on Chongming Island was easily affected by land use types compared with other regions, TN, TP, BOD<sub>5</sub>, COD were shown as the most significant responses among all the water quality indicators. Green land and water area had a reduced effect on nutrients, expansion of industrial land would continuously make a contribution of pollutants to the water environment. Suggestions should therefore be taken into consideration during the process of development planning, in order to prevent water contamination.
基金supported by the National Natural Science Foundation of China(Grant No.90102007)the Knowledge Innovation Project of the Chinese Academy of Sciences(Grant No.KZCX1-08-03).
文摘This paper analyzes the monitored data of the 4 times of stream water conveyances to the river section where the stream flow was cut-off, of 9 groundwater-monitoring sections and 18 vegetation plots in the lower reaches of Tarim River. The results show that the groundwater depth in the lower reaches of Tarim River rose from 9.87 m before the conveyances to 7.74 m and 3.79 m after the first and second conveyances, 3.61 and 3.16 m after the 2 phases of the third conveyance, and 2.66 m after the fourth conveyance. The transverse response scope of groundwater level was gradually enlarged along both sides of the channel of conveyances, i.e., from 450 m in width after the first conveyance to 1050 m after the fourth conveyance, but the response degree of groundwater level was reduced with the increase of the distance away from the channel of conveyances. The composition, distribution and growth status of the natural vegetation are directly related to the groundwater depth. The indexes of Simpson’s biodiversity, McIntosh’s evenness and Margalef’s richness, which reflect the change of the quantity of species and the degree of biodiversity, are reduced from 0.70, 0.48 and 0.90 to 0.26, 0.17 and 0.37 re- spectively along with the drawdown of groundwater level from the upper reaches to the lower reaches. After the stream water conveyances, the natural vegetation in the lower reaches is saved and restored along with the rise of groundwater level, the response scope of vegetation is gradually enlarged, i.e., from 200— 250 m in width after the first conveyance to 800 m after the fourth conveyance. However, there is still a great disparity to the objective of protecting the “Green Corridor”in the lower reaches of Tarim River. Thus, it is suggested to convey the stream water in double-channel way, combine the conveyance with water supply in surface scope, or construct the modern pipe-conveyance network systems so as to save the natural vegetation in an intensive way, achieve the efficient water consumption and speed up the restoration and re- generation of the damaged ecosystems in the lower reaches of Tarim River.
基金supportedby Key Program of National Natural Science Foundation of China (Grant No. 41030527)Hundred Talents Program of the Chinese Academy of Sciences (Grant No. 0827611002)+4 种基金West Light Program for Talent Cultiration of Chinese Academy of Sciences (CAS), Open Foundation of SKLCS, CAS (Grant No. SKLCS09-04)China Postdoctoral Science Foundation (Grant No. 20110490062)Indenendent Program of SKLCS,CAS (Grant No. SKLCS-ZZ-2012-02-01)National Natural Science Foundation of China (Grant Nos. 40930526 and 40771046)Foundation for Excellent Youth Scholars of CAREERI, CAS
文摘Diurnal minor and trace elements in glacial outflow water draining the Qiyi Glacier and associated hydrological controls as well as the filtration effects on water chemistry were examined. Results show that major ions, Li, St, and Ba are exported pre- dominately as mobile monovalent or divalent ions and are controlled by hydrological variations over the diurnal cycle exhibit- ing an inverse concentration with discharge, suggesting that Li, Sr, and Ba can be used as tracers in subglacial hydrological investigations. Conversely, other elements (e.g. Fe, Al, and Cr) exhibit variations that are not strongly correlated with the dis- charge reflecting the physicochemical controls. The non-filtered operation appears not to strongly influence Sr and Ba, but has an effect on some elements such as Fe, Al, V, Ti, and Co, indicating that these changed elements are transported in particulate forms and thus their concentrations are highly dependent on particulate numbers in solutions. This implies that the immediate filtration after sampling is essential in hydrochemical studies at Alpine glacial basins due to subsequent mineral dissolution.
文摘The EC (electrical conductivity), pH and concentrations of major anions, cations and dissolved silica were determined in the stream meltwater draining from the glacier. Stream meltwater samples were sampled during June and October 1997 from Dudu glacier, Bhngirathi valley, Garhwal Himalaya. This study is an attempt to reveal the hydrochemical processes operating in the glacialized regime of Garhwal Himalaya. The results show that the abundance order of cations and anions in the meltwater is c(Ca2+ )>c(Na+ )>c(Mg2+ ) >c(K+ ) and c(SO42- ) >c>(HCO3-) >c(NO3- ) >c(CI- ). The rock weathering is the most important mechanism controlling the water chemistry in the basin. Pyrite oxidation and carbonation are the main hydrogen ion supply reactions contributing to the chemical weathering in the basin. There is a distinct difference between the solute concentrations in samples collected during June and October.
基金supported by National Basic Research Program (Grant Nos. 2010CB428403, 2010CB951001)Chinese COPES Project (Grant No. GYHY200706005)National High Technology Research and Development Program of China (Grant No. 2009AA12Z129)
文摘Water table over an arid region can be elevated to a critical level to sustain terrestrial ecosystem along the natural channel by the stream water conveyance. Estimation of water table depth and soil moisture on river channel profile may be reduced to a two-dimensional moving boundary problem with soil water-groundwater interaction. The two-dimensional soil water flow with stream water transferred is divided into an unsaturated vertical soil water flow and a horizontal groundwater flow. Therefore, a prediction model scheme for water table depths under the interaction between soil water and groundwater with stream water transferred is presented, which includes a vertical soil water movement model, a horizontal groundwater movement model, and an interface model. The synthetic experiments are conducted to test the sensitivities of the river elevation, horizontal conductivity, and surface flux, and the results from the experiments show the robustness of the proposed scheme under different conditions. The groundwater horizontal conductivity of the proposed scheme is also calibrated by SCE-UA method and validated by data collected at the Yingsu section in the lower reaches of the Tarim River, which shows that the model can reasonably simulate the water table depths.
基金Department of Chemistry at Mississippi State University for financial support for this project
文摘An improved method for trace level quantification of dicyandiamide in stream water has been developed. This method includes sample pretreatment using solid phase extraction.The extraction procedure(including loading, washing, and eluting) used a flow rate of1.0 m L/min, and dicyandiamide was eluted with 20 m L of a methanol/acetonitrile mixture(V/V = 2:3), followed by pre-concentration using nitrogen evaporation and analysis with high performance liquid chromatography–ultraviolet spectroscopy(HPLC–UV). Sample extraction was carried out using a Waters Sep-Pak AC-2 Cartridge(with activated carbon).Separation was achieved on a ZIC-Hydrophilic Interaction Liquid Chromatography(ZIC-HILIC)(50 mm × 2.1 mm, 3.5 μm) chromatography column and quantification was accomplished based on UV absorbance. A reliable linear relationship was obtained for the calibration curve using standard solutions(R^2〉 0.999). Recoveries for dicyandiamide ranged from 84.6% to 96.8%, and the relative standard deviations(RSDs, n = 3) were below 6.1% with a detection limit of 5.0 ng/m L for stream water samples.
文摘Xiayun Township watershed in the upper reaches of Hongfeng Lake is selected to study the relationship between stream grade and water quality.Turbidity and ammonium nitrogen concentration are obviously related to the stream grade,generally speaking,are positively correlated,and the water quality is degrading from the upper reaches to the lower reaches.In the future,the influence of different land use types on the water quality should be fully analyzed on the basis of enhancing the water quality monitoring to provide supports for effectively controlling non-point source pollutions and treating the water environment of Hongfeng Lake.
文摘In this study conducted in the coastal zone of Cameroon, biological indices and functional feeding groups of benthic macroinvertebrates were used to assess the health status of two urban streams. For a better diagnosis, two streams located in coastal forest zone were used as a reference. Benthic macroinvertebrates were sampled monthly over a 3-month period (from May to July 2017) in six urban stations and six forest stations. Measurements of the physicochemical variables were done simultaneously. Physicochemical analysis revealed that urban streams are strongly polluted with high content of decaying organic matters, while forest streams are slightly polluted as indicated by the Principal Component Analysis. Concerning benthic macroinvertebrates, urban streams are poorly diversified with the proliferation of taxa tolerant to water pollution and belonging to the functional feeding groups of collectors-gatherers. Inversely, forest streams are more diversified and dominated by sensitive taxa, most belonging to the functional feeding groups of predators and shredders. These marked differences between biological indices and feeding mode of benthic macroinvertebrates in forest and urban rivers confirm the reliability of benthic macroinvertebrates as good indicators of freshwater ecosystem in the coastal zone of Cameroon.
基金Project(KLVF-2007-4) supported by Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment,Ministry of Education,Chongqing University,ChinaProject(CSTC2008CE9095) supported by Chongqing Science and Technology Commission,ChinaProject(KJ080803) supported by Chongqing Municipal Education Commission,China
文摘Based on a detailed environmental investigation of the whole Qingshui Stream catchments,samples of water and surface sediments were collected at 15 different places from the upper to the lower reaches of Qingshui Stream,and samples of suspended matter were obtained by filtrating the water samples. The concentrations of heavy metals (Cd,Cu and Zn) were measured in filtered water,suspended matter,and surface sediment by ICP-AES. The results show that the concentrations of the three heavy metals in filtered water are 0.18,6.6 and 17.67 μg/L,lower than that of the Fresh Water Quality Criteria (US EPA) and those of the plain urban rivers,but the contents of Cd,Cu and Zn are much higher than the mean values of rivers in the world and the background value in Jialing River basin. The heavy metals concentrations in the suspended matter from Qingshui Stream are 2.08,438.14 and 1 348.05 mg/kg,much higher than the corresponding background values of soils in Chongqing city. The heavy metals concentrations in the surface sediment from Qingshui Stream are 0.84,189.75 and 838.23 mg/kg,and the values of index of geoaccumulation Igeo of Cd,Cu and Zn show that their pollution degrees are moderate. The heavy metals exist in three transferable forms such as water,suspended matter and surface sediment in Qingshui Stream. The heavy metals concentrations in water are the lowest,and those in the suspended matter are the highest,so the ecological risk in suspended matter is the highest. The distribution tendencies of three metals in water,suspended matter and surface sediment in main riverbed are different.
文摘Based on the linear wave, solitary wave and fifth order stokes wave derived by use of the Unified Variational Principle of Water Gravity Wave (UVPWGW), this paper derives stream function wave theory by using UVPWGW. This paper will handle the Kinematic Free Surface Boundary Condition (KFSBC) and Dynamic Free Surface Boundary Condition (DFSBC) directly and give the optimum solution, instead of the conditions Sigma(Q(av) - Q(i))(2) = min, and the related equations of stational condition. When the wave height H, period T and water depth D are given, the original stream function wave will be determined, and can not be adjusted if it does not agree with the real case; in the present method, the adjustment can be done by adding several constraint conditions, for example, the wave profile can be adjusted according to the condition of accurate peak position. The examples given in this paper show that for the original stream function wave, the DFSBC can be fairly well satisfied, but the KFSBC can not; however, the stream function wave derived by UVPWGW is better than the original one in the sense of minimum error squares in the aspect of the level at which KFSBC and DFSBC are satisfied.
文摘Heavy metal pollution from both anthropogenic and natural processes can have significant effect on environmental quality of stream and river systems. However, in Ghana, heavy metal pollution of waterbodies is attributed mainly to mining activities but the role of natural mechanisms in altering stream water and sediment quality in relation to heavy metals has received little attention. Spatial and temporal variation in water quality parameters and heavy metal concentrations in water and sediments were studied comparatively in a river and two streams in a gold-rich watershed impacted by heavy mining activities. Samples were collected monthly over a twelve-month period from November 2010 to October 2011 from upstream (unmined) and downstream (mined) sections of the studied streams. Parameters measured include temperature, dissolved oxygen, conductivity, pH, turbidity, colour, mercury (Hg) and arsenic. High spatial variability of water quality parameters was found. Hg concentrations in water were extremely low in both upstream and downstream areas. Maximum geochemical background levels of Hg in unmined pristine areas were 2.45 mg/g whilst arsenic was 29.10 mg/g. By contrast, gold-mined downstream areas recorded Hg and arsenic concentrations of 8.75 mg/g and 82.53 mg/g in stream sediments respectively. Levels of Hg and arsenic in sediments were several orders of magnitude greater than concentrations in surface water in downstream sections and this may be explained by substances originating from mining activities, upstream transport or remobilized sedimented materials in the overlying water column. Our study showed that both natural and human activities may contribute to heavy metal pollution in the highly mineralized watershed of the Pra River Basin. Human factors are however likely to amplify the natural background levels of heavy metals.
基金National Natural Science Foundation of China(No.40474065)the National TCM Project in the 11th Five-Year Plan Period of China(No.2006BAB01B01)
文摘Based on the first linearized Boussincsq equation, the analytical solution of the transient groundwater model, which is used for describing phreatic flow in a semiinfinite aquifer bounded by a linear stream and subjected to time-dependent vertical seepage, is derived out by Laplace transform and the convolution integral. According to the mathematical characteristics of the solution, different methods for estimating aquifer parameters are constructed to satisfy different hydrological conditions. Then, tile equation for estimating water exchange between stream and aquifer is proposed, and a recursion equation or estimating the intensity of phreatic evaporation is also proposed. A phreatic aquifer stream system located in Huaibei Plain, Anhui Province, China, is taken as an example to demonstrate tile estimation process of the methods stated herein.
文摘The SWAT model was used to predict total phosphorus (TP) loadings for a 1555-ha karst watershed—Chapel Branch Creek (CBC)—which drains to a lake via a reservoir-like embayment (R-E). The model was first tested for monthly streamflow predictions from tributaries draining three potential source areas as well as the downstream R-E, followed by TP loadings using data collected March 2007-October 2009. Source areas included 1) a golf course that received applied wastewater, 2) urban areas, highway, and some agricultural lands, and 3) a cave spring draining a second golf course along with agricultural and forested areas, including a substantial contribution of subsurface water via karst connectivity. SWAT predictions of mean monthly TP loadings at the first two source outlets were deemed reasonable. However, the predictions at the cave spring outlet were somewhat poorer, likely due to diffuse variable groundwater flow from an unknown drainage area larger than the actual surface watershed, for which monthly subsurface flow was represented as a point source during simulations. Further testing of the SWAT model to predict monthly TP loadings at the R-E, modeled as a completely mixed system, resulted in their over-predictions most of the months, except when high lake water levels occurred. The mean monthly and annual flows were calibrated to acceptable limits with the exception of flow over-prediction when lake levels were low and surface water from tributaries disappeared into karst connections. The discrepancy in TP load predictions was attributed primarily to the use of limited monthly TP data collected during baseflow in the embayment. However, for the 22-month period, over-prediction of mean monthly TP load (34.6 kg/mo) by 13% compared to measured load (30.6 kg/mo) in the embayment was deemed acceptable. Simulated results showed a 42% reduction in TP load due to settling in the embayment.