Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL...Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL)models find helpful in the detection and classification of anomalies.This article designs an oversampling with an optimal deep learning-based streaming data classification(OS-ODLSDC)model.The aim of the OSODLSDC model is to recognize and classify the presence of anomalies in the streaming data.The proposed OS-ODLSDC model initially undergoes preprocessing step.Since streaming data is unbalanced,support vector machine(SVM)-Synthetic Minority Over-sampling Technique(SVM-SMOTE)is applied for oversampling process.Besides,the OS-ODLSDC model employs bidirectional long short-term memory(Bi LSTM)for AD and classification.Finally,the root means square propagation(RMSProp)optimizer is applied for optimal hyperparameter tuning of the Bi LSTM model.For ensuring the promising performance of the OS-ODLSDC model,a wide-ranging experimental analysis is performed using three benchmark datasets such as CICIDS 2018,KDD-Cup 1999,and NSL-KDD datasets.展开更多
In recent decades,the importance of surface acoustic waves,as a biocompatible tool to integrate with microfluidics,has been proven in various medical and biological applications.The numerical modeling of acoustic stre...In recent decades,the importance of surface acoustic waves,as a biocompatible tool to integrate with microfluidics,has been proven in various medical and biological applications.The numerical modeling of acoustic streaming caused by surface acoustic waves in microchannels requires the effect of viscosity to be considered in the equations which complicates the solution.In this paper,it is shown that the major contribution of viscosity and the horizontal component of actuation is concentrated in a narrow region alongside the actuation boundary.Since the inviscid equations are considerably easier to solve,a division into the viscous and inviscid domains would alleviate the computational load significantly.The particles'traces calculated by this approximation are excellently alongside their counterparts from the completely viscous model.It is also shown that the optimum thickness for the viscous strip is about 9-fold the acoustic boundary layer thickness for various flow patterns and amplitudes of actuation.展开更多
With the rise of live streaming on social media, platforms like Facebook, Instagram, and YouTube have become powerful business tools. They enable users to share live videos, fostering direct connections between busine...With the rise of live streaming on social media, platforms like Facebook, Instagram, and YouTube have become powerful business tools. They enable users to share live videos, fostering direct connections between businesses and their customers. This critical literature review paper explores the impact of live streaming on businesses, focusing on its role in attracting and satisfying consumers by promoting products tailored to their needs and wants. It emphasizes live streaming’s crucial role in engaging customers, a key to business growth. The study also provides viable strategies for businesses to leverage live streaming for growth and customer engagement, underscoring its importance in the business landscape.展开更多
Analyze the compatibility between cosmetics and live streaming e-commerce from its own nature,marketing means and supply chain characteristics.According to the prominent problems,sort out the relationship between all ...Analyze the compatibility between cosmetics and live streaming e-commerce from its own nature,marketing means and supply chain characteristics.According to the prominent problems,sort out the relationship between all parties in the cosmetics live e-commerce industry chain.Combined with the latest regulatory policies of live streaming e-commerce and cosmetics,the responsibilities of different subjects in cosmetics live streaming e-commerce are summarized,and relevant suggestions and countermeasures are put forward for the standardization and development of live streaming e-commerce.Cosmetics brand owners are the first responsible persons for product quality.Anchors,as a mixed identity between intermediary,advertising spokesperson and operator,should bear stricter joint and several liability when recommending products related to consumers’health.If anchors fail to clearly identify themselves in the recommendation process,thus causing consumers to mistake them for the operator of the cosmetics,they should assume the obligations of the operator.展开更多
In recent years,with the rapid development and popularization of Internet information technology,many new media platforms have risen rapidly,and major e-commerce companies have begun to explore the mode of livestreami...In recent years,with the rapid development and popularization of Internet information technology,many new media platforms have risen rapidly,and major e-commerce companies have begun to explore the mode of livestreaming.Especially during the COVID-19 pandemic,due to the lockdown,live-streaming has become an important means of economic development in many places.Owing to its remarkable characteristics of timeliness,entertainment,and interactivity,it has become the latest and trendiest sales mode of e-commerce channels,reflecting huge economic potential and commercial value.This article analyzes two models and their characteristics of live-streaming sales from a practical perspective.Based on this,it outlines consumer purchasing decisions and the factors that affect consumer purchasing decisions under the live-streaming sales model.Finally,it discusses targeted suggestions for using the live-streaming sales model to expand the consumer market,hoping to promote the healthy and steady development of the live-streaming sales industry.展开更多
分布式拒绝服务(distributed denial of service,DDoS)攻击是重要的安全威胁,网络速度的不断提高给传统的检测方法带来了新的挑战。以Spark等为代表的大数据处理技术,给网络安全的高速检测带来了新的契机。提出了一种基于Spark Streamin...分布式拒绝服务(distributed denial of service,DDoS)攻击是重要的安全威胁,网络速度的不断提高给传统的检测方法带来了新的挑战。以Spark等为代表的大数据处理技术,给网络安全的高速检测带来了新的契机。提出了一种基于Spark Streaming框架的自适应实时DDoS检测防御技术,通过对滑动窗口内源簇进行分组,并根据与各分组内源簇比例的偏差统计,检测出DDoS攻击流量。通过感知合法的网络流量,实现了对DDoS攻击的自适应快速检测和有效响应。实验结果表明,该技术可极大地提升检测能力,为保障网络服务性能和安全检测的可扩展性提供了一种可行的解决方案。展开更多
In this paper, the QoS(Quality of Service) control in streaming media is discussed, and more attention has been paid on the implementation of Qos control in the streaming media server system of the IP network architec...In this paper, the QoS(Quality of Service) control in streaming media is discussed, and more attention has been paid on the implementation of Qos control in the streaming media server system of the IP network architecture.展开更多
In order to improve the precision of super point detection and control measurement resource consumption, this paper proposes a super point detection method based on sampling and data streaming algorithms (SDSD), and...In order to improve the precision of super point detection and control measurement resource consumption, this paper proposes a super point detection method based on sampling and data streaming algorithms (SDSD), and proves that only sources or destinations with a lot of flows can be sampled probabilistically using the SDSD algorithm. The SDSD algorithm uses both the IP table and the flow bloom filter (BF) data structures to maintain the IP and flow information. The IP table is used to judge whether an IP address has been recorded. If the IP exists, then all its subsequent flows will be recorded into the flow BF; otherwise, the IP flow is sampled. This paper also analyzes the accuracy and memory requirements of the SDSD algorithm , and tests them using the CERNET trace. The theoretical analysis and experimental tests demonstrate that the most relative errors of the super points estimated by the SDSD algorithm are less than 5%, whereas the results of other algorithms are about 10%. Because of the BF structure, the SDSD algorithm is also better than previous algorithms in terms of memory consumption.展开更多
文摘Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL)models find helpful in the detection and classification of anomalies.This article designs an oversampling with an optimal deep learning-based streaming data classification(OS-ODLSDC)model.The aim of the OSODLSDC model is to recognize and classify the presence of anomalies in the streaming data.The proposed OS-ODLSDC model initially undergoes preprocessing step.Since streaming data is unbalanced,support vector machine(SVM)-Synthetic Minority Over-sampling Technique(SVM-SMOTE)is applied for oversampling process.Besides,the OS-ODLSDC model employs bidirectional long short-term memory(Bi LSTM)for AD and classification.Finally,the root means square propagation(RMSProp)optimizer is applied for optimal hyperparameter tuning of the Bi LSTM model.For ensuring the promising performance of the OS-ODLSDC model,a wide-ranging experimental analysis is performed using three benchmark datasets such as CICIDS 2018,KDD-Cup 1999,and NSL-KDD datasets.
文摘In recent decades,the importance of surface acoustic waves,as a biocompatible tool to integrate with microfluidics,has been proven in various medical and biological applications.The numerical modeling of acoustic streaming caused by surface acoustic waves in microchannels requires the effect of viscosity to be considered in the equations which complicates the solution.In this paper,it is shown that the major contribution of viscosity and the horizontal component of actuation is concentrated in a narrow region alongside the actuation boundary.Since the inviscid equations are considerably easier to solve,a division into the viscous and inviscid domains would alleviate the computational load significantly.The particles'traces calculated by this approximation are excellently alongside their counterparts from the completely viscous model.It is also shown that the optimum thickness for the viscous strip is about 9-fold the acoustic boundary layer thickness for various flow patterns and amplitudes of actuation.
文摘With the rise of live streaming on social media, platforms like Facebook, Instagram, and YouTube have become powerful business tools. They enable users to share live videos, fostering direct connections between businesses and their customers. This critical literature review paper explores the impact of live streaming on businesses, focusing on its role in attracting and satisfying consumers by promoting products tailored to their needs and wants. It emphasizes live streaming’s crucial role in engaging customers, a key to business growth. The study also provides viable strategies for businesses to leverage live streaming for growth and customer engagement, underscoring its importance in the business landscape.
文摘Analyze the compatibility between cosmetics and live streaming e-commerce from its own nature,marketing means and supply chain characteristics.According to the prominent problems,sort out the relationship between all parties in the cosmetics live e-commerce industry chain.Combined with the latest regulatory policies of live streaming e-commerce and cosmetics,the responsibilities of different subjects in cosmetics live streaming e-commerce are summarized,and relevant suggestions and countermeasures are put forward for the standardization and development of live streaming e-commerce.Cosmetics brand owners are the first responsible persons for product quality.Anchors,as a mixed identity between intermediary,advertising spokesperson and operator,should bear stricter joint and several liability when recommending products related to consumers’health.If anchors fail to clearly identify themselves in the recommendation process,thus causing consumers to mistake them for the operator of the cosmetics,they should assume the obligations of the operator.
文摘In recent years,with the rapid development and popularization of Internet information technology,many new media platforms have risen rapidly,and major e-commerce companies have begun to explore the mode of livestreaming.Especially during the COVID-19 pandemic,due to the lockdown,live-streaming has become an important means of economic development in many places.Owing to its remarkable characteristics of timeliness,entertainment,and interactivity,it has become the latest and trendiest sales mode of e-commerce channels,reflecting huge economic potential and commercial value.This article analyzes two models and their characteristics of live-streaming sales from a practical perspective.Based on this,it outlines consumer purchasing decisions and the factors that affect consumer purchasing decisions under the live-streaming sales model.Finally,it discusses targeted suggestions for using the live-streaming sales model to expand the consumer market,hoping to promote the healthy and steady development of the live-streaming sales industry.
文摘分布式拒绝服务(distributed denial of service,DDoS)攻击是重要的安全威胁,网络速度的不断提高给传统的检测方法带来了新的挑战。以Spark等为代表的大数据处理技术,给网络安全的高速检测带来了新的契机。提出了一种基于Spark Streaming框架的自适应实时DDoS检测防御技术,通过对滑动窗口内源簇进行分组,并根据与各分组内源簇比例的偏差统计,检测出DDoS攻击流量。通过感知合法的网络流量,实现了对DDoS攻击的自适应快速检测和有效响应。实验结果表明,该技术可极大地提升检测能力,为保障网络服务性能和安全检测的可扩展性提供了一种可行的解决方案。
文摘In this paper, the QoS(Quality of Service) control in streaming media is discussed, and more attention has been paid on the implementation of Qos control in the streaming media server system of the IP network architecture.
基金The National Basic Research Program of China(973Program)(No.2009CB320505)the Natural Science Foundation of Jiangsu Province(No. BK2008288)+1 种基金the Excellent Young Teachers Program of Southeast University(No.4009001018)the Open Research Program of Key Laboratory of Computer Network of Guangdong Province (No. CCNL200706)
文摘In order to improve the precision of super point detection and control measurement resource consumption, this paper proposes a super point detection method based on sampling and data streaming algorithms (SDSD), and proves that only sources or destinations with a lot of flows can be sampled probabilistically using the SDSD algorithm. The SDSD algorithm uses both the IP table and the flow bloom filter (BF) data structures to maintain the IP and flow information. The IP table is used to judge whether an IP address has been recorded. If the IP exists, then all its subsequent flows will be recorded into the flow BF; otherwise, the IP flow is sampled. This paper also analyzes the accuracy and memory requirements of the SDSD algorithm , and tests them using the CERNET trace. The theoretical analysis and experimental tests demonstrate that the most relative errors of the super points estimated by the SDSD algorithm are less than 5%, whereas the results of other algorithms are about 10%. Because of the BF structure, the SDSD algorithm is also better than previous algorithms in terms of memory consumption.