In order to investigate the time-dependent behaviors of deep hard rocks in the diversion tunnel of Jinping II hydropower station, uniaxial creep tests were carried out by using the triaxial testing machine RC-2000. Th...In order to investigate the time-dependent behaviors of deep hard rocks in the diversion tunnel of Jinping II hydropower station, uniaxial creep tests were carried out by using the triaxial testing machine RC-2000. The axial compressive load was applied step by step and each creep stage was kept for over several days. Test results show that: (1) The lateral deformation of rock specimens is 2-3 times the axial compressive deformation and accelerates drastically before damage, which may be employed as an indicator to predict the excavation-induced instability of rocks. (2) The resultant deformation changes from compression to expansion when the Poisson's ratio is larger than 0.5, indicating the starting point of damage. (3) In the step-loading stages, the Poisson's ratio approximately remains constant; under constantly imposed load, the Poisson's ratio changes with elapsed time, growing continuously before the specimen is damaged. (4) When the applied load reaches a certain threshold value, the rock deteriorates with time, and the strength of rocks approximately has a negative exponent relation with time. (5) The failure modes of the deep marble are different in long- and short-term loading conditions. Under the condition of short-term loading, the specimen presents a mode of tensile failure; while under the condition of long-term loading, the specimen presents a mode of shear failure, followed by tensile failure.展开更多
Many measures, such as water injection, acid fracturing, thermal recovery, have been taken in the oilfield development. These can easily induce brittle fracture of set cement. Most of all, there are greater potential ...Many measures, such as water injection, acid fracturing, thermal recovery, have been taken in the oilfield development. These can easily induce brittle fracture of set cement. Most of all, there are greater potential for fractures in set cement in slim holes. Therefore, it is necessary to improve the toughness of the cement mantle. Results obtained from experiments show that carbon fiber, with a concentration of 0.12%-0.19% in cement and a length of 700 to 1,400μm, plays an important role in improving cement quality. Addition of carbon fiber can improve the bending strength of set cement by up to 30%. At the same time, the increase in fiber concentration can lower the elastic modulus and increase the Poisson's ratio of set cement. Thin-section analysis shows that fiber can effectively prevent the propagation of fractures and enhance the plasticity of the matrix and the ability to prevent fracture.展开更多
Thailand is lacked of gas that more information of probable (P2) and possible (P3) reserve data including shale gas can be acceptable to prove (P1) reserve data for new gas field. This research had implicated for unde...Thailand is lacked of gas that more information of probable (P2) and possible (P3) reserve data including shale gas can be acceptable to prove (P1) reserve data for new gas field. This research had implicated for understanding of unconventional reservoir rock by rock mechanical, micro-CT, and geochemistry analysis of the Huai Hin Lat Formation. The rock mechanical analysis is composed of average young’s modulus, Poisson’s ratio, and compressive strength of 1933.79 MPa, 0.1472, and 52.56 MPa. The average porosity of 6.89% consists of 5.41% and 1.48% of closed and open porosities. The average mineralogical results consist mainly of 57.60% and 42.40% of brittle and ductile minerals indicating more elasticity except Bed 6. The Bed 6 is significantly higher quartz (15%) and brittle minerals (64%) indicating to easier fracture are, therefore, lower compressive strength (25.93 MPa), young’s modulus (1729.10 MPa) and Poisson’s ratio (0.0705). The Beds 3B is slightly higher clay containing slightly higher closed porosity (5.46%) but the Bed 14 is slightly higher brittle mineral indicating to slightly higher open porosity.展开更多
Applying a novel method of arc-glow plasma depositing, a 2μm-thick coating with 12 sub-layers of TiN and CrN was deposited alternately on the surface of magnesium alloy AZ91D to improve its wear resistance. The wear ...Applying a novel method of arc-glow plasma depositing, a 2μm-thick coating with 12 sub-layers of TiN and CrN was deposited alternately on the surface of magnesium alloy AZ91D to improve its wear resistance. The wear behavior was investigated by test of ball on disc sliding. The composition and microstructure of the coating were also analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the morphology of TiN-CrN film was surveyed through scanning electronic microscopy (SEM) and atom force microscopy (AFM).The adhesion strength between film and matrix was evaluated by ways of stick-peeling test. The surface micro-hardness of the coating is above HK0.011 433, and the specific wear ratio of specimens coated with TiN-CrN films tested decreases greatly compared to that of the bare metal.展开更多
基金Supported by the National Natural Science Foundation of China(50909092)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences (Z000802)the Natural Science Foundation of Hubei Province (2009CDB120)
文摘In order to investigate the time-dependent behaviors of deep hard rocks in the diversion tunnel of Jinping II hydropower station, uniaxial creep tests were carried out by using the triaxial testing machine RC-2000. The axial compressive load was applied step by step and each creep stage was kept for over several days. Test results show that: (1) The lateral deformation of rock specimens is 2-3 times the axial compressive deformation and accelerates drastically before damage, which may be employed as an indicator to predict the excavation-induced instability of rocks. (2) The resultant deformation changes from compression to expansion when the Poisson's ratio is larger than 0.5, indicating the starting point of damage. (3) In the step-loading stages, the Poisson's ratio approximately remains constant; under constantly imposed load, the Poisson's ratio changes with elapsed time, growing continuously before the specimen is damaged. (4) When the applied load reaches a certain threshold value, the rock deteriorates with time, and the strength of rocks approximately has a negative exponent relation with time. (5) The failure modes of the deep marble are different in long- and short-term loading conditions. Under the condition of short-term loading, the specimen presents a mode of tensile failure; while under the condition of long-term loading, the specimen presents a mode of shear failure, followed by tensile failure.
文摘Many measures, such as water injection, acid fracturing, thermal recovery, have been taken in the oilfield development. These can easily induce brittle fracture of set cement. Most of all, there are greater potential for fractures in set cement in slim holes. Therefore, it is necessary to improve the toughness of the cement mantle. Results obtained from experiments show that carbon fiber, with a concentration of 0.12%-0.19% in cement and a length of 700 to 1,400μm, plays an important role in improving cement quality. Addition of carbon fiber can improve the bending strength of set cement by up to 30%. At the same time, the increase in fiber concentration can lower the elastic modulus and increase the Poisson's ratio of set cement. Thin-section analysis shows that fiber can effectively prevent the propagation of fractures and enhance the plasticity of the matrix and the ability to prevent fracture.
文摘Thailand is lacked of gas that more information of probable (P2) and possible (P3) reserve data including shale gas can be acceptable to prove (P1) reserve data for new gas field. This research had implicated for understanding of unconventional reservoir rock by rock mechanical, micro-CT, and geochemistry analysis of the Huai Hin Lat Formation. The rock mechanical analysis is composed of average young’s modulus, Poisson’s ratio, and compressive strength of 1933.79 MPa, 0.1472, and 52.56 MPa. The average porosity of 6.89% consists of 5.41% and 1.48% of closed and open porosities. The average mineralogical results consist mainly of 57.60% and 42.40% of brittle and ductile minerals indicating more elasticity except Bed 6. The Bed 6 is significantly higher quartz (15%) and brittle minerals (64%) indicating to easier fracture are, therefore, lower compressive strength (25.93 MPa), young’s modulus (1729.10 MPa) and Poisson’s ratio (0.0705). The Beds 3B is slightly higher clay containing slightly higher closed porosity (5.46%) but the Bed 14 is slightly higher brittle mineral indicating to slightly higher open porosity.
基金Project(20041065) supported by the Natural Science Foundation of Shanxi Province, China
文摘Applying a novel method of arc-glow plasma depositing, a 2μm-thick coating with 12 sub-layers of TiN and CrN was deposited alternately on the surface of magnesium alloy AZ91D to improve its wear resistance. The wear behavior was investigated by test of ball on disc sliding. The composition and microstructure of the coating were also analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the morphology of TiN-CrN film was surveyed through scanning electronic microscopy (SEM) and atom force microscopy (AFM).The adhesion strength between film and matrix was evaluated by ways of stick-peeling test. The surface micro-hardness of the coating is above HK0.011 433, and the specific wear ratio of specimens coated with TiN-CrN films tested decreases greatly compared to that of the bare metal.