The fractal dimension(FD) of surfaces has been widely used to characterize the properties of materials.However,most of the previous researches were concentrated on the correlation between the FD of surfaces and mech...The fractal dimension(FD) of surfaces has been widely used to characterize the properties of materials.However,most of the previous researches were concentrated on the correlation between the FD of surfaces and mechanical properties of materials,such as impact energy and fracture toughness,etc.The aim of this paper is to characterize the spheroidization grade and strength of 15CrMo steel through determination of FD of cementite phase on the basis of two-dimension microstructural image.Two methods,namely slit-island method(SIM) and box-counting method(BCM),are used to determine the value of FD.It is found that the FD value evaluated by using BCM is generally higher than that evaluated by SIM.This phenomenon may be due to the difference in the principles used in different methods.Whether SIM or BCM is used,the spheroidization grade in 15CrMo steel linearly increases with decreasing the value of FD.The relationship between the FD value,D,and spheroidization grade,Sg,can be approximately expressed as D≌-0.11Sg+A,where A is a constant value which is depended on the evaluation method.Both the ultimate strength and the yielding strength of 15CrMo steel increase with increasing FD of cementite phase.There may be a common relationship between the FD of cementite phase and strength of 15CrMo steel.When the FD of cementite phase in 15CrMo steel is determined,the strength of this steel can be evaluated.The present paper can provide a novel method to evaluate the strength and spheroidization grade of carbon steel through determination of fractal dimension(FD) of cementite phase.展开更多
Fluororesin-based anti-corrosive coatings including graded FEP/PPS were prepared on carbon steel by melt powder coating, the bonding strength of all coating systems was determined by the pull-off test. It is found tha...Fluororesin-based anti-corrosive coatings including graded FEP/PPS were prepared on carbon steel by melt powder coating, the bonding strength of all coating systems was determined by the pull-off test. It is found that the poor adhesion of fluororesin coatings to metallic substrates is improved obviously by the graded coating structure of FEP/PPS, and the bonding strength reaches up to 11.8 MPa for the five-layer system. Examination by electron probe microanalysis (EPMA) verifies that the distribution of main components is graded in the five-layer system, which is responsible for the enhancement of the interfacial bonding.展开更多
This study considers P.O42.5 cement from different sources and evaluates the related surplus coefficient(defined as the proportionality factor linking the measured compressive strength value of the cement after 28 day...This study considers P.O42.5 cement from different sources and evaluates the related surplus coefficient(defined as the proportionality factor linking the measured compressive strength value of the cement after 28 days to the“standard”value of cement strength).The needed tests have been conducted using a mixer,a pressure testing machine,a flexural testing machine,a vibrating table a ramming rod,a feeder and a metal ruler.The average value of the measured cement strength surplus coefficient of cement produced by five distinct cement manufacturers has been found to be 1.16.These results can be used as the basis to reduce the production cost and improve the performance of commercial concrete.展开更多
This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC) plate with a periodic array of edge cracks. The FGC i...This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC) plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF). The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.展开更多
Mortars provide the continuity required for the stability and exclusion of weather elements in masonry assemblies. But because of the heterogeneity of the mortar, its mechanism of behaviour under different load effect...Mortars provide the continuity required for the stability and exclusion of weather elements in masonry assemblies. But because of the heterogeneity of the mortar, its mechanism of behaviour under different load effects is dependent on the properties of the constituents of the mortar. The aim of paper is to determine the effect sand grading for various cement-sand-lime mortar designations (BS) and strength classes (EC) on the compressive strength and stiffness of mortar. Two silica sands;HST 95 and HST60 were used to make mortars in three strength classes: M2, M4 and M6, corresponding to mortar designations iv, iii and ii respectively. The results show that mortar made with the HST60 sand (coarser grading) usually resulted in mortar with a higher compressive strength and stiffness. The One Way ANOVA analysis of both compressive strength and stiffness at a significance level of 5% on the effect of sand grading on the two parameters also shows that they are both significant. There is also strong evidence of a linear correlation between the stiffness and compressive strength. The results indicate that in order to replicate full scale behaviour of masonry at model scales, the grading of fine aggregate in the models should be similar so as to properly model full scale behavior.展开更多
Based on the needs of the market,a new 52 MPa medium-density and high-strength ceramic proppant was prepared by adopting third grade bauxite and clay as raw materials and using the solid phase sintering method,and the...Based on the needs of the market,a new 52 MPa medium-density and high-strength ceramic proppant was prepared by adopting third grade bauxite and clay as raw materials and using the solid phase sintering method,and the effect of the firing temperature on the microstructure,phase composition and mechanical properties of the ceramic proppant was studied. The broken resistance mechanism of this ceramic proppant was also discussed. The results show that the main phases of the prepared ceramic proppant are mullite and corundum; the broken rates are 3. 92% and 7. 21% under 52 MPa and69 MPa,respectively.展开更多
Compositionally graded composite of alumina-20%zirconia (volume fraction) was fabricated by using centrifugal casting incorporated with relatively thin slip. An EPMA analysis exhibited a nearly linear variation of the...Compositionally graded composite of alumina-20%zirconia (volume fraction) was fabricated by using centrifugal casting incorporated with relatively thin slip. An EPMA analysis exhibited a nearly linear variation of the alumina/zirconia ratio along the centrifugal direction; zirconia tended to accumulate in the bottom section, while alumina in the top section. Such a graded structure exhibited a considerably higher flexural strength when the alumina rich surface was subjected to a tensile stress than compositionally uniform composite of the same average composition. Fracture toughness measurement across the specimen thickness by indentation method revealed that the crack lengths along the vertical and horizontal directions were different. The anisotropy of the fracture toughness was accounted for by the variation of the residual stress across the specimen thickness.展开更多
基金supported by National Natural Science Foundations ofChina (Grant Nos. 50835003,50805047,10972078)National Hi-tech Research and Development Program of China (863 Program,Grant No.2009AA04Z421)
文摘The fractal dimension(FD) of surfaces has been widely used to characterize the properties of materials.However,most of the previous researches were concentrated on the correlation between the FD of surfaces and mechanical properties of materials,such as impact energy and fracture toughness,etc.The aim of this paper is to characterize the spheroidization grade and strength of 15CrMo steel through determination of FD of cementite phase on the basis of two-dimension microstructural image.Two methods,namely slit-island method(SIM) and box-counting method(BCM),are used to determine the value of FD.It is found that the FD value evaluated by using BCM is generally higher than that evaluated by SIM.This phenomenon may be due to the difference in the principles used in different methods.Whether SIM or BCM is used,the spheroidization grade in 15CrMo steel linearly increases with decreasing the value of FD.The relationship between the FD value,D,and spheroidization grade,Sg,can be approximately expressed as D≌-0.11Sg+A,where A is a constant value which is depended on the evaluation method.Both the ultimate strength and the yielding strength of 15CrMo steel increase with increasing FD of cementite phase.There may be a common relationship between the FD of cementite phase and strength of 15CrMo steel.When the FD of cementite phase in 15CrMo steel is determined,the strength of this steel can be evaluated.The present paper can provide a novel method to evaluate the strength and spheroidization grade of carbon steel through determination of fractal dimension(FD) of cementite phase.
文摘Fluororesin-based anti-corrosive coatings including graded FEP/PPS were prepared on carbon steel by melt powder coating, the bonding strength of all coating systems was determined by the pull-off test. It is found that the poor adhesion of fluororesin coatings to metallic substrates is improved obviously by the graded coating structure of FEP/PPS, and the bonding strength reaches up to 11.8 MPa for the five-layer system. Examination by electron probe microanalysis (EPMA) verifies that the distribution of main components is graded in the five-layer system, which is responsible for the enhancement of the interfacial bonding.
文摘This study considers P.O42.5 cement from different sources and evaluates the related surplus coefficient(defined as the proportionality factor linking the measured compressive strength value of the cement after 28 days to the“standard”value of cement strength).The needed tests have been conducted using a mixer,a pressure testing machine,a flexural testing machine,a vibrating table a ramming rod,a feeder and a metal ruler.The average value of the measured cement strength surplus coefficient of cement produced by five distinct cement manufacturers has been found to be 1.16.These results can be used as the basis to reduce the production cost and improve the performance of commercial concrete.
文摘This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC) plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF). The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.
文摘Mortars provide the continuity required for the stability and exclusion of weather elements in masonry assemblies. But because of the heterogeneity of the mortar, its mechanism of behaviour under different load effects is dependent on the properties of the constituents of the mortar. The aim of paper is to determine the effect sand grading for various cement-sand-lime mortar designations (BS) and strength classes (EC) on the compressive strength and stiffness of mortar. Two silica sands;HST 95 and HST60 were used to make mortars in three strength classes: M2, M4 and M6, corresponding to mortar designations iv, iii and ii respectively. The results show that mortar made with the HST60 sand (coarser grading) usually resulted in mortar with a higher compressive strength and stiffness. The One Way ANOVA analysis of both compressive strength and stiffness at a significance level of 5% on the effect of sand grading on the two parameters also shows that they are both significant. There is also strong evidence of a linear correlation between the stiffness and compressive strength. The results indicate that in order to replicate full scale behaviour of masonry at model scales, the grading of fine aggregate in the models should be similar so as to properly model full scale behavior.
基金supported by Shanxi Coal Sustainable Development Fund Project ( 20131766 )Shanxi Outstanding Graduate Innovation Project ( 20133118 )+1 种基金Shanxi Science and Technology Platform Construction Project ( 2013091019 )Shanxi Soft Science Project ( 2013041020 - 02 )
文摘Based on the needs of the market,a new 52 MPa medium-density and high-strength ceramic proppant was prepared by adopting third grade bauxite and clay as raw materials and using the solid phase sintering method,and the effect of the firing temperature on the microstructure,phase composition and mechanical properties of the ceramic proppant was studied. The broken resistance mechanism of this ceramic proppant was also discussed. The results show that the main phases of the prepared ceramic proppant are mullite and corundum; the broken rates are 3. 92% and 7. 21% under 52 MPa and69 MPa,respectively.
文摘Compositionally graded composite of alumina-20%zirconia (volume fraction) was fabricated by using centrifugal casting incorporated with relatively thin slip. An EPMA analysis exhibited a nearly linear variation of the alumina/zirconia ratio along the centrifugal direction; zirconia tended to accumulate in the bottom section, while alumina in the top section. Such a graded structure exhibited a considerably higher flexural strength when the alumina rich surface was subjected to a tensile stress than compositionally uniform composite of the same average composition. Fracture toughness measurement across the specimen thickness by indentation method revealed that the crack lengths along the vertical and horizontal directions were different. The anisotropy of the fracture toughness was accounted for by the variation of the residual stress across the specimen thickness.