For different strength matching, the reliability index and failure probability of welded pressure pipe with circumferential surface crack were calculated using three dimensional stochastic finite element method. This ...For different strength matching, the reliability index and failure probability of welded pressure pipe with circumferential surface crack were calculated using three dimensional stochastic finite element method. This method has overcome the shortcomings of conservative results in safety assessment with deterministic fracture mechanics method. The effects of external moment and the depth of the circumferential surface crack (a) on the reliability of pressure pipe were also calculated and discussed. The calculation results indicate that the strength matching has certain effect on the reliability of the welded pressure pipe with circumferential surface crack. The failure probability of welded pressure pipe with high strength matching is lower than that with low strength matching at the same conditions. The effects of strength matching on the failure probability and reliability index increased by adding external moment (M) and the depth of the circumferential surface crack (a).展开更多
Fracture parameters of welded joints with different strength matching and crack depth in weld metal are investigated by using the methods of elastoplastic finite element analysis and three point bend specimen test. Th...Fracture parameters of welded joints with different strength matching and crack depth in weld metal are investigated by using the methods of elastoplastic finite element analysis and three point bend specimen test. The results show that for shallow crack, the plastic zone turns large in loading process, and the fracture toughness turns high. The extent of the plastic zone of overmatched joint is larger than that of undermatched joint because it will extends to parent metal from the weld metal in loading process for the same CTOD value. The plastic zone of undermatched joint is restricted within the weld, and the size of that is small. Overmatched joint shows the fracture behaviour of shallow crack may more easily than the undermatched joint, while the two sorts of joint specimens have the same crack depth. Therefore, the fracture-resistant capability of overmatched weld is better than that of undermatched weld. when the toughness of weld metals is similar for both overmatched and undermatched joints.展开更多
To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was ...To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was studied using an optical microscope(OM),a scanning electron microscope(SEM),a transmission electron microscope(TEM),and mechanical property tests.The results show that when the wheel steel is slightly cooled to an appropriate temperature above A c3 point for a short time after it has been austenitized at an elevated temperature,the solid-solved vanadium is pre-precipitated in the form of V(C,N)second phase semicoherent with the matrix in the originalγgrain.This phase hardly participates in matrix strengthening.Due to the small mismatch between V(C,N)and ferrite(α),during the subsequent-cooling phase transformation stage,the pre-precipitated second phase becomes theαnucleation point,causing granular and ellipsoidal intragranular ferrite(IGF,with an average size of 4-6μm)to nucleate in the originalγ.The IGF production and strength loss increases with the increasing undercooling degree.Based on this,Masteel Co.,Ltd.has developed a new heat-treatment step-cooling process that can promote the formation of IGF,considerably improving the level and uniformity of fracture toughness on the premise that the strength and hardness of the wheel are almost unchanged.展开更多
Based on systematically summarizing the achievements of previous ion-matched waterflooding researches,the diversity and synergy of oil recovery enhancement mechanisms and the interaction between mechanisms are examine...Based on systematically summarizing the achievements of previous ion-matched waterflooding researches,the diversity and synergy of oil recovery enhancement mechanisms and the interaction between mechanisms are examined according to two classification standards,and the influence of behaviors of different ions on different mechanisms and oil displacement efficiency are investigated.Ionic strength is proposed to characterize the behavior differences of univalent and divalent ions,the relationships between ionic strength,effective concentration,and mechanisms are established to characterize the ion behavior behind various mechanisms,and evaluate the performance of ion-matched injection water.The mechanisms of enhancing oil recovery by ion-matched waterflooding include:(1)The ion-matched water can reduce the ion strength and match the ion composition of formation water,thereby reducing the difference between the effective concentration of univalent ions and divalent ions on the surface of carbonate rocks,and improving the effective concentration of potential determining ions(especially SO42-).(2)It can improve wettability,oil-water interface properties,pore structure and physical properties of the reservoir,and finally enable the establishment of a new ionic equilibrium conducive to waterflooding while breaking the original equilibrium.In this study,experiments such as relative permeability curve,interfacial tension,and core-flooding were carried out on carbonate core samples from the Cretaceous Mishrif Formation reservoirs in Halfaya Oilfield,Middle East,a method for injection water evaluation was established and the injection water suitable for these reservoirs was selected:6 times diluted seawater.Compared with ordinary seawater,oil displacement efficiency can be increased by more than 4.60%and compared with the optimum dilution of formation water,oil displacement efficiency can be increased by 3.14%.展开更多
环焊缝的强度匹配形式和耐腐蚀性对管道可靠运行至关重要。文中分别采用低强匹配、等强匹配和高强匹配三种匹配形式对D1219×18.4 mm X80螺旋焊管进行焊条电弧焊,对焊接接头进行抗氢致开裂(HIC)试验,并综合包括化学成分、微观组织...环焊缝的强度匹配形式和耐腐蚀性对管道可靠运行至关重要。文中分别采用低强匹配、等强匹配和高强匹配三种匹配形式对D1219×18.4 mm X80螺旋焊管进行焊条电弧焊,对焊接接头进行抗氢致开裂(HIC)试验,并综合包括化学成分、微观组织、接头强度和韧性等各种因素分析,研究不同强度匹配形式对X80管线钢环焊缝抗氢致裂纹性能的影响。结果表明,三种匹配方式下的X80管线钢焊接接头的抗HIC性能均能满足相关要求,且采用三种强度匹配焊条焊接接头的裂纹长度敏感率(CLR)、裂纹厚度敏感率(CTR)以及裂纹敏感率(CSR)随着匹配强度的升高而升高;焊缝金属的C、P、S含量对HIC敏感性有显著影响,降低这些元素的含量有助于提高焊缝的抗HIC性能;微观组织观察表明,焊缝金属的组织类型和形态对HIC敏感性也有重要影响,热力学平衡且稳定的细小组织是抗HIC的理想组织。展开更多
文摘For different strength matching, the reliability index and failure probability of welded pressure pipe with circumferential surface crack were calculated using three dimensional stochastic finite element method. This method has overcome the shortcomings of conservative results in safety assessment with deterministic fracture mechanics method. The effects of external moment and the depth of the circumferential surface crack (a) on the reliability of pressure pipe were also calculated and discussed. The calculation results indicate that the strength matching has certain effect on the reliability of the welded pressure pipe with circumferential surface crack. The failure probability of welded pressure pipe with high strength matching is lower than that with low strength matching at the same conditions. The effects of strength matching on the failure probability and reliability index increased by adding external moment (M) and the depth of the circumferential surface crack (a).
文摘Fracture parameters of welded joints with different strength matching and crack depth in weld metal are investigated by using the methods of elastoplastic finite element analysis and three point bend specimen test. The results show that for shallow crack, the plastic zone turns large in loading process, and the fracture toughness turns high. The extent of the plastic zone of overmatched joint is larger than that of undermatched joint because it will extends to parent metal from the weld metal in loading process for the same CTOD value. The plastic zone of undermatched joint is restricted within the weld, and the size of that is small. Overmatched joint shows the fracture behaviour of shallow crack may more easily than the undermatched joint, while the two sorts of joint specimens have the same crack depth. Therefore, the fracture-resistant capability of overmatched weld is better than that of undermatched weld. when the toughness of weld metals is similar for both overmatched and undermatched joints.
文摘To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was studied using an optical microscope(OM),a scanning electron microscope(SEM),a transmission electron microscope(TEM),and mechanical property tests.The results show that when the wheel steel is slightly cooled to an appropriate temperature above A c3 point for a short time after it has been austenitized at an elevated temperature,the solid-solved vanadium is pre-precipitated in the form of V(C,N)second phase semicoherent with the matrix in the originalγgrain.This phase hardly participates in matrix strengthening.Due to the small mismatch between V(C,N)and ferrite(α),during the subsequent-cooling phase transformation stage,the pre-precipitated second phase becomes theαnucleation point,causing granular and ellipsoidal intragranular ferrite(IGF,with an average size of 4-6μm)to nucleate in the originalγ.The IGF production and strength loss increases with the increasing undercooling degree.Based on this,Masteel Co.,Ltd.has developed a new heat-treatment step-cooling process that can promote the formation of IGF,considerably improving the level and uniformity of fracture toughness on the premise that the strength and hardness of the wheel are almost unchanged.
基金Supported by the China National Science and Technology Major Project(2017ZX05030-001).
文摘Based on systematically summarizing the achievements of previous ion-matched waterflooding researches,the diversity and synergy of oil recovery enhancement mechanisms and the interaction between mechanisms are examined according to two classification standards,and the influence of behaviors of different ions on different mechanisms and oil displacement efficiency are investigated.Ionic strength is proposed to characterize the behavior differences of univalent and divalent ions,the relationships between ionic strength,effective concentration,and mechanisms are established to characterize the ion behavior behind various mechanisms,and evaluate the performance of ion-matched injection water.The mechanisms of enhancing oil recovery by ion-matched waterflooding include:(1)The ion-matched water can reduce the ion strength and match the ion composition of formation water,thereby reducing the difference between the effective concentration of univalent ions and divalent ions on the surface of carbonate rocks,and improving the effective concentration of potential determining ions(especially SO42-).(2)It can improve wettability,oil-water interface properties,pore structure and physical properties of the reservoir,and finally enable the establishment of a new ionic equilibrium conducive to waterflooding while breaking the original equilibrium.In this study,experiments such as relative permeability curve,interfacial tension,and core-flooding were carried out on carbonate core samples from the Cretaceous Mishrif Formation reservoirs in Halfaya Oilfield,Middle East,a method for injection water evaluation was established and the injection water suitable for these reservoirs was selected:6 times diluted seawater.Compared with ordinary seawater,oil displacement efficiency can be increased by more than 4.60%and compared with the optimum dilution of formation water,oil displacement efficiency can be increased by 3.14%.
文摘环焊缝的强度匹配形式和耐腐蚀性对管道可靠运行至关重要。文中分别采用低强匹配、等强匹配和高强匹配三种匹配形式对D1219×18.4 mm X80螺旋焊管进行焊条电弧焊,对焊接接头进行抗氢致开裂(HIC)试验,并综合包括化学成分、微观组织、接头强度和韧性等各种因素分析,研究不同强度匹配形式对X80管线钢环焊缝抗氢致裂纹性能的影响。结果表明,三种匹配方式下的X80管线钢焊接接头的抗HIC性能均能满足相关要求,且采用三种强度匹配焊条焊接接头的裂纹长度敏感率(CLR)、裂纹厚度敏感率(CTR)以及裂纹敏感率(CSR)随着匹配强度的升高而升高;焊缝金属的C、P、S含量对HIC敏感性有显著影响,降低这些元素的含量有助于提高焊缝的抗HIC性能;微观组织观察表明,焊缝金属的组织类型和形态对HIC敏感性也有重要影响,热力学平衡且稳定的细小组织是抗HIC的理想组织。