The corrosions resulting from defects in painting layers frequently occur in Al alloys, so the application of corrosion preventing systems is also very important. Optimum conditions in terms of electrochemistry in rel...The corrosions resulting from defects in painting layers frequently occur in Al alloys, so the application of corrosion preventing systems is also very important. Optimum conditions in terms of electrochemistry in relation to solution treatment, quenching and artificial aging treatment were established in order to optimize precipitation strengthening conditions intended to enhance the strength of Al alloys. Slow strain rate tests (SSRT) at various applied potentials were conducted in potential range from -1.8 to 0.5 V. The results show that the maximum tensile strengths, elongations and time-to-fracture are shown to be high values. After precipitation strengthening heat treatment, a tendency appear that time-to-fracture increases as elongation increases. In the potential range from -1.3 V to -0.7 V, the specimens show excellent mechanical properties, and thus this range is considered to be a corrosion prevention range.展开更多
Alumina dispersion strengthened copper(ADSC) alloy was produced by internal oxidation. The hardness, ultimate tensile strength and electrical conductivity measurements and microstructure observation on the produced ...Alumina dispersion strengthened copper(ADSC) alloy was produced by internal oxidation. The hardness, ultimate tensile strength and electrical conductivity measurements and microstructure observation on the produced 0.12%ADSC (0.24% Al2O3, mass fraction) and 0.25%ADSC (0.50% Al2O3) subjected to different annealing treatments were conducted. The results show that the microstructure of the produced ADSC is characterized by an uniform distribution of nano-Al2O3 particles in Cu-matrix; the particles range in size from 20 to 50 nm with an interparticle spacing of 30100 nm. The produced 0.12%ADSC can maintain more than 87% hardness retention after 900 ℃, 1 h annealing treatment; the recrystallization can be largely retarded and is not fully completed even after annealing at 1 000 ℃ for 1 h, followed by cold deformation of 84%; local grain growth can be observed after 1 050 ℃, 1 h annealing treatment. The results also show that increasing either the alumina content or cold deformation degree increases the hardness of the produced ADSC.展开更多
A new surface strengthening technology, luster polish strengthening treatment, was proposed to treat the raceway surface of aeroengine bearings (9Cr18Mo) with the centrifugal strengthening machine exclusively design...A new surface strengthening technology, luster polish strengthening treatment, was proposed to treat the raceway surface of aeroengine bearings (9Cr18Mo) with the centrifugal strengthening machine exclusively designed for luster polish strengthening treatment. The experimental results showed that luster polish strengthening treatment produced a compressive residual stress layer with a depth of over 80 μm below the surface of the bearing raceway, and thus effectively removed the metamorphic layer in the raceway surface. After luster polish strengthening treatment, the average surface hardness of the aeroengine bearing raceway was increased from 61.02 HRC to 63.01 HRC, the surface roughness was reduced from 0.06 μm to 0.03 μm, and the contact fatigue life of the aeroengine bearings was improved by about 90%, with the dispersion of fatigue life being reduced remarkably. Theoretical calculation result agrees with that obtained by experiment.展开更多
文摘The corrosions resulting from defects in painting layers frequently occur in Al alloys, so the application of corrosion preventing systems is also very important. Optimum conditions in terms of electrochemistry in relation to solution treatment, quenching and artificial aging treatment were established in order to optimize precipitation strengthening conditions intended to enhance the strength of Al alloys. Slow strain rate tests (SSRT) at various applied potentials were conducted in potential range from -1.8 to 0.5 V. The results show that the maximum tensile strengths, elongations and time-to-fracture are shown to be high values. After precipitation strengthening heat treatment, a tendency appear that time-to-fracture increases as elongation increases. In the potential range from -1.3 V to -0.7 V, the specimens show excellent mechanical properties, and thus this range is considered to be a corrosion prevention range.
基金Project(0122021300) supported by the Natural Science Foundation of Henan Province
文摘Alumina dispersion strengthened copper(ADSC) alloy was produced by internal oxidation. The hardness, ultimate tensile strength and electrical conductivity measurements and microstructure observation on the produced 0.12%ADSC (0.24% Al2O3, mass fraction) and 0.25%ADSC (0.50% Al2O3) subjected to different annealing treatments were conducted. The results show that the microstructure of the produced ADSC is characterized by an uniform distribution of nano-Al2O3 particles in Cu-matrix; the particles range in size from 20 to 50 nm with an interparticle spacing of 30100 nm. The produced 0.12%ADSC can maintain more than 87% hardness retention after 900 ℃, 1 h annealing treatment; the recrystallization can be largely retarded and is not fully completed even after annealing at 1 000 ℃ for 1 h, followed by cold deformation of 84%; local grain growth can be observed after 1 050 ℃, 1 h annealing treatment. The results also show that increasing either the alumina content or cold deformation degree increases the hardness of the produced ADSC.
基金The National Key Project of China duringthe 10th Five-Year Plan Period (NoMKPT-01-004(ZD))
文摘A new surface strengthening technology, luster polish strengthening treatment, was proposed to treat the raceway surface of aeroengine bearings (9Cr18Mo) with the centrifugal strengthening machine exclusively designed for luster polish strengthening treatment. The experimental results showed that luster polish strengthening treatment produced a compressive residual stress layer with a depth of over 80 μm below the surface of the bearing raceway, and thus effectively removed the metamorphic layer in the raceway surface. After luster polish strengthening treatment, the average surface hardness of the aeroengine bearing raceway was increased from 61.02 HRC to 63.01 HRC, the surface roughness was reduced from 0.06 μm to 0.03 μm, and the contact fatigue life of the aeroengine bearings was improved by about 90%, with the dispersion of fatigue life being reduced remarkably. Theoretical calculation result agrees with that obtained by experiment.