Retinal ganglion cell(RGC) degeneration is irreversible in glaucoma and tyrosine kinase receptor B(Trk B)-associated signaling pathways have been implicated in the process.In this study,we attempted to examine whe...Retinal ganglion cell(RGC) degeneration is irreversible in glaucoma and tyrosine kinase receptor B(Trk B)-associated signaling pathways have been implicated in the process.In this study,we attempted to examine whether imipramine,a tricyclic antidepressant,may protect hydrogen peroxide(H_2O_2)-induced RGC degeneration through the activation of the Trk B pathway in RGC-5 cell lines.RGC-5 cell lines were pre-treated with imipramine 30 minutes before exposure to H_2O_2.Western blot assay showed that in H_2O_2-damaged RGC-5 cells,imipramine activated Trk B pathways through extracellular signal-regulated protein kinase/Trk B phosphorylation.TUNEL staining assay also demonstrated that imipramine ameliorated H_2O_2-induced apoptosis in RGC-5 cells.Finally,Trk B-Ig G intervention was able to reverse the protective effect of imipramine on H_2O_2-induced RGC-5 apoptosis.Imipramine therefore protects RGCs from oxidative stress-induced apoptosis through the Trk B signaling pathway.展开更多
Cerebral ischemia triggers secondary ischemia/reperfusion injury and endoplasmic reticulum stress initiates cell apoptosis. However, the regulatory mechanism of the signaling pathway remains unclear. We hypothesize th...Cerebral ischemia triggers secondary ischemia/reperfusion injury and endoplasmic reticulum stress initiates cell apoptosis. However, the regulatory mechanism of the signaling pathway remains unclear. We hypothesize that the regulatory mechanisms are mediated by the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α in the endoplasmic reticulum stress signaling pathway. To verify this hypothesis, we occluded the middle cerebral artery in rats to establish focal cerebral ischemia/reperfusion model. Results showed that the expression levels of protein kinase-like endoplasmic reticulum kinase and caspase-3, as well as the phosphorylation of eukaryotic initiation factor 2α, were increased after ischemia/reperfusion. Administration of atorvastatin decreased the expression of protein kinase-like endoplasmic reticulum kinase, caspase-3 and phosphorylated eukaryotic initiation factor 2α, reduced the infarct volume and improved ultrastructure in the rat brain. After salubrinal, the specific inhibitor of phosphorylated eukaryotic initiation factor 2α was given into the rats intragastrically, the expression levels of caspase-3 and phosphorylated eukaryotic initiation factor 2α in the were decreased, a reduction of the infarct volume and less ultrastructural damage were observed than the untreated, ischemic brain. However, salubrinal had no impact on the expression of protein kinase-like endoplasmic reticulum kinase. Experimental findings indicate that atorvastatin inhibits endoplasmic reticulum stress and exerts neuroprotective effects. The underlying mechanisms of attenuating ischemia/reperfusion injury are associated with the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/caspase-3 pathway.展开更多
Calcium-dependent protein kinases(CPKs)are serine/threonine protein kinases that function in plant stress responses. Although CPKs are recognized as key messengers in signal transduction, the specific roles of CPKs ...Calcium-dependent protein kinases(CPKs)are serine/threonine protein kinases that function in plant stress responses. Although CPKs are recognized as key messengers in signal transduction, the specific roles of CPKs and the molecular mechanisms underlying their activity remain largely unknown. Here, we characterized the function of Os CPK_(24), a cytosol-localized calciumdependent protein kinase in rice. Os CPK_(24) was universally and highly expressed in rice plants and was induced by cold treatment. Whereas Os CPK_(24) knockdown plants exhibited increased sensitivity to cold compared to wild type(WT), Os CPK_(24)-overexpressing plants exhibited increased cold tolerance. Plants overexpressing Os CPK_(24) exhibited increased accumulation of proline(an osmoprotectant) and glutathione(an antioxidant) and maintained a higher GSH/GSSG(reduced glutathione to oxidized glutathione) ratio during cold stress compared to WT. In addition to these effects in response to cold stress, we observed the kinase activity of Os CPK_(24) varied under different calcium concentrations. Further,Os CPK_(24) phosphorylated Os Grx_(10), a glutathionedependent thioltransferase, at rates modulated by changes in calcium concentration. Together, our results support the hypothesis that Os CPK_(24) functions as a positive regulator of cold stress tolerance in rice, a process mediated by calcium signaling and involving phosphorylation and the inhibition of Os Grx_(10) to sustain higher glutathione levels.展开更多
Objective: To investigate the effect of Yishen Jiangzhuo Granules (益肾降浊冲剂 , YSJZG) on mitochondrial injury and regeneration and renal tubular epithelial cell apoptosis in chronic renal failure (CRF) rats an...Objective: To investigate the effect of Yishen Jiangzhuo Granules (益肾降浊冲剂 , YSJZG) on mitochondrial injury and regeneration and renal tubular epithelial cell apoptosis in chronic renal failure (CRF) rats and explore its mechanism from molecular pathology, gene, protein levels, and relative pathway. Methods: The CRF rat model was established using 5/6 nephrectomy. Sixty rats were randomly divided into six groups: sham-operation group, model (CRF) group, Niaoduqing Granules (尿毒清颗粒)-treated group [5 g/(kg.day)], low-, moderate-, and high-dose [L-YSJZG, M-YSJZG, H-YSJZG at 3, 6, and 9 g/(kg-day)] YSJZG-treated group (n=10 each). The levels of serum creatinine (Scr), blood urea nitrogen (BUN), and 24-h urine protein were assessed after 10 weeks of treatment. The tubulointerstitial injury and collagen deposition were evaluated using periodic acid-schiff stain and Masson staining. Renal tubular epithelial cell apoptosis was assessed using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay, mitochondrial injury was observed using an electron microscope, and superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) levels were assessed using chromometry. Transforming growth factor- 1 β(TGF-β 1) expression was assessed using immunohistochemistry. The expressions of Bax, Bcl-2, peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α), mitochondrial transcription factor A (Tfam), mitogen-activated protein kinases (MAPK) phosphorylation were evaluated by Western blot. Results: YSJZG decreased the 24-h urine protein, BUN, Scr, remnant kidney weight-to-body weight ratio, renal tubular injury, deposition of collagen, and the apoptosis of renal tubular epithelial cells in a dose-dependent manner. YSJZG dose-dependently restored the number and structure of mitochondria and the expression of Tfam and PCG-1 α, up-regulated the expression of Bcl-2, and inhibited the expression of Bax. YSJZG also dose-dependently inhibited TGF- 13 1 expression, increased SOD and GSH activity, decreased the MDA level, and inhibited p38MAPK and pERK1/2 phosphorylation (all P〈0.01). Conclusion: YSJZG improved the renal function in rats with CRF and inhibited the progression of tubulointerstitial fibrosis by dose-dependently alleviating mitochondrial injury, restoring the expression of Tfam and PCG-1α , and inhibiting renal tubular epithelial cell apoptosis through inhibiting activation of reactive oxygen species-MAPK signaling.展开更多
文摘Retinal ganglion cell(RGC) degeneration is irreversible in glaucoma and tyrosine kinase receptor B(Trk B)-associated signaling pathways have been implicated in the process.In this study,we attempted to examine whether imipramine,a tricyclic antidepressant,may protect hydrogen peroxide(H_2O_2)-induced RGC degeneration through the activation of the Trk B pathway in RGC-5 cell lines.RGC-5 cell lines were pre-treated with imipramine 30 minutes before exposure to H_2O_2.Western blot assay showed that in H_2O_2-damaged RGC-5 cells,imipramine activated Trk B pathways through extracellular signal-regulated protein kinase/Trk B phosphorylation.TUNEL staining assay also demonstrated that imipramine ameliorated H_2O_2-induced apoptosis in RGC-5 cells.Finally,Trk B-Ig G intervention was able to reverse the protective effect of imipramine on H_2O_2-induced RGC-5 apoptosis.Imipramine therefore protects RGCs from oxidative stress-induced apoptosis through the Trk B signaling pathway.
文摘Cerebral ischemia triggers secondary ischemia/reperfusion injury and endoplasmic reticulum stress initiates cell apoptosis. However, the regulatory mechanism of the signaling pathway remains unclear. We hypothesize that the regulatory mechanisms are mediated by the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α in the endoplasmic reticulum stress signaling pathway. To verify this hypothesis, we occluded the middle cerebral artery in rats to establish focal cerebral ischemia/reperfusion model. Results showed that the expression levels of protein kinase-like endoplasmic reticulum kinase and caspase-3, as well as the phosphorylation of eukaryotic initiation factor 2α, were increased after ischemia/reperfusion. Administration of atorvastatin decreased the expression of protein kinase-like endoplasmic reticulum kinase, caspase-3 and phosphorylated eukaryotic initiation factor 2α, reduced the infarct volume and improved ultrastructure in the rat brain. After salubrinal, the specific inhibitor of phosphorylated eukaryotic initiation factor 2α was given into the rats intragastrically, the expression levels of caspase-3 and phosphorylated eukaryotic initiation factor 2α in the were decreased, a reduction of the infarct volume and less ultrastructural damage were observed than the untreated, ischemic brain. However, salubrinal had no impact on the expression of protein kinase-like endoplasmic reticulum kinase. Experimental findings indicate that atorvastatin inhibits endoplasmic reticulum stress and exerts neuroprotective effects. The underlying mechanisms of attenuating ischemia/reperfusion injury are associated with the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/caspase-3 pathway.
基金funded by the National Natural Science Foundation of China (31571753)the National High Technology Research and Development Program of China
文摘Calcium-dependent protein kinases(CPKs)are serine/threonine protein kinases that function in plant stress responses. Although CPKs are recognized as key messengers in signal transduction, the specific roles of CPKs and the molecular mechanisms underlying their activity remain largely unknown. Here, we characterized the function of Os CPK_(24), a cytosol-localized calciumdependent protein kinase in rice. Os CPK_(24) was universally and highly expressed in rice plants and was induced by cold treatment. Whereas Os CPK_(24) knockdown plants exhibited increased sensitivity to cold compared to wild type(WT), Os CPK_(24)-overexpressing plants exhibited increased cold tolerance. Plants overexpressing Os CPK_(24) exhibited increased accumulation of proline(an osmoprotectant) and glutathione(an antioxidant) and maintained a higher GSH/GSSG(reduced glutathione to oxidized glutathione) ratio during cold stress compared to WT. In addition to these effects in response to cold stress, we observed the kinase activity of Os CPK_(24) varied under different calcium concentrations. Further,Os CPK_(24) phosphorylated Os Grx_(10), a glutathionedependent thioltransferase, at rates modulated by changes in calcium concentration. Together, our results support the hypothesis that Os CPK_(24) functions as a positive regulator of cold stress tolerance in rice, a process mediated by calcium signaling and involving phosphorylation and the inhibition of Os Grx_(10) to sustain higher glutathione levels.
基金Supported by the Key Research Fund from the Education Department(No.JA12136,JK2011020)the Department of Health of Fujian Province(No.2013-ZQN-ZD-17,wzsb201304)Fujian Medical University(No.JGG2013-01)
文摘Objective: To investigate the effect of Yishen Jiangzhuo Granules (益肾降浊冲剂 , YSJZG) on mitochondrial injury and regeneration and renal tubular epithelial cell apoptosis in chronic renal failure (CRF) rats and explore its mechanism from molecular pathology, gene, protein levels, and relative pathway. Methods: The CRF rat model was established using 5/6 nephrectomy. Sixty rats were randomly divided into six groups: sham-operation group, model (CRF) group, Niaoduqing Granules (尿毒清颗粒)-treated group [5 g/(kg.day)], low-, moderate-, and high-dose [L-YSJZG, M-YSJZG, H-YSJZG at 3, 6, and 9 g/(kg-day)] YSJZG-treated group (n=10 each). The levels of serum creatinine (Scr), blood urea nitrogen (BUN), and 24-h urine protein were assessed after 10 weeks of treatment. The tubulointerstitial injury and collagen deposition were evaluated using periodic acid-schiff stain and Masson staining. Renal tubular epithelial cell apoptosis was assessed using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay, mitochondrial injury was observed using an electron microscope, and superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) levels were assessed using chromometry. Transforming growth factor- 1 β(TGF-β 1) expression was assessed using immunohistochemistry. The expressions of Bax, Bcl-2, peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α), mitochondrial transcription factor A (Tfam), mitogen-activated protein kinases (MAPK) phosphorylation were evaluated by Western blot. Results: YSJZG decreased the 24-h urine protein, BUN, Scr, remnant kidney weight-to-body weight ratio, renal tubular injury, deposition of collagen, and the apoptosis of renal tubular epithelial cells in a dose-dependent manner. YSJZG dose-dependently restored the number and structure of mitochondria and the expression of Tfam and PCG-1 α, up-regulated the expression of Bcl-2, and inhibited the expression of Bax. YSJZG also dose-dependently inhibited TGF- 13 1 expression, increased SOD and GSH activity, decreased the MDA level, and inhibited p38MAPK and pERK1/2 phosphorylation (all P〈0.01). Conclusion: YSJZG improved the renal function in rats with CRF and inhibited the progression of tubulointerstitial fibrosis by dose-dependently alleviating mitochondrial injury, restoring the expression of Tfam and PCG-1α , and inhibiting renal tubular epithelial cell apoptosis through inhibiting activation of reactive oxygen species-MAPK signaling.