BACKGROUND Radical gastrectomy(RG)is commonly used in the treatment of patients with gastric cancer(GC),but this procedure may lead to stress responses,postoperative cognitive dysfunction,and blood coagulation abnorma...BACKGROUND Radical gastrectomy(RG)is commonly used in the treatment of patients with gastric cancer(GC),but this procedure may lead to stress responses,postoperative cognitive dysfunction,and blood coagulation abnormalities in patients.AIM To investigate the influences of dexmedetomidine(DEX)on stress responses and postoperative cognitive and coagulation functions in patients undergoing RG under general anesthesia(GA).METHODS One hundred and two patients undergoing RG for GC under GA from February 2020 to February 2022 were retrospectively reviewed.Of these,50 patients had received conventional anesthesia intervention[control group(CG)]and 52 patients had received DEX in addition to routine anesthesia intervention[observation group(OG)].Inflammatory factor(IFs;tumor necrosis factor-α,TNF-α;interleukin-6,IL-6),stress responses(cortisol,Cor;adrenocorticotropic hormone,ACTH),cognitive function(CF;Mini-Mental State Examination,MMSE),neurological function(neuron-specific enolase,NSE;S100 calciumbinding protein B,S100B),and coagulation function(prothrombin time,PT;thromboxane B2,TXB2;fibrinogen,FIB)were compared between the two groups before surgery(T0),as well as at 6 h(T1)and 24 h(T2)after surgery.RESULTS Compared with T0,TNF-α,IL-6,Cor,ACTH,NSE,S100B,PT,TXB2,and FIB showed a significant increase in both groups at T1 and T2,but with even lower levels in OG vs CG.Both groups showed a significant reduction in the MMSE score at T1 and T2 compared with T0,but the MMSE score was notably higher in OG compared with CG.CONCLUSION In addition to a potent inhibitory effect on postoperative IFs and stress responses in GC patients undergoing RG under GA,DEX may also alleviate the coagulation dysfunction and improve the postoperative CF of these patients.展开更多
Plant male reproduction is a fine-tuned developmental process that is susceptible to stressful environments and influences crop grain yields.Phytohormone signaling functions in control of plant normal growth and devel...Plant male reproduction is a fine-tuned developmental process that is susceptible to stressful environments and influences crop grain yields.Phytohormone signaling functions in control of plant normal growth and development as well as in response to external stresses,but the interaction or crosstalk among phytohormone signaling,stress response,and male reproduction in plants remains poorly understood.Cross-species comparison among 514 stress-response transcriptomic libraries revealed that ms33-6038,a genic male sterile mutant deficient in the Zm Ms33/Zm GPAT6 gene,displayed an excessive drought stress-like transcriptional reprogramming in anthers triggered mainly by disturbed jasmonic acid(JA)homeostasis.An increased level of JA appeared in Zm Ms33-deficient anthers at both meiotic and postmeiotic stages and activated genes involved in JA biosynthesis and signaling as well as genes functioning in JA-mediated drought response.Excessive accumulation of JA elevated expression level of a gene encoding a WRKY transcription factor that activated the Zm Ms33 promoter.These findings reveal a feedback loop of Zm Ms33-JA-WRKY-Zm Ms33 in controlling male sterility and JA-mediated stress response in maize,shedding light on the crosstalk of stress response and male sterility mediated by phytohormone homeostasis and signaling.展开更多
Nutrient and stress factor 1(Nsf1),a transcription factor containing the classical Cys2-His2(C_(2)H_(2))zinc finger motif,is expressed under non-fermentable carbon conditions and in response to salt stress in Saccharo...Nutrient and stress factor 1(Nsf1),a transcription factor containing the classical Cys2-His2(C_(2)H_(2))zinc finger motif,is expressed under non-fermentable carbon conditions and in response to salt stress in Saccharomyces cerevisiae.However,the role of Nsf1 in filamentous fungi is not well understood.In this study,the orthologue of Nsf1 was investigated in Fusarium graminearum(named FgNsf1),a causal agent of Fusarium head blight(FHB).The functions of FgNsf1 were evaluated by constructing a FgNSF1 deletion mutant,designated asΔFgNsf1,and its functional complementation mutantΔFgNsf1-C.Gene deletion experiments showed that the mycelial growth rate,asexual and sexual reproduction ofΔFgNsf1 were significantly reduced,but the pigment production ofΔFgNsf1 was remarkably increased compared with the PH-1 andΔFgNsf1-C.In addition,the tolerance ofΔFgNsf1 to osmotic pressures,cell wall-damaging agents and oxidative stress increased significantly.Sensitivity tests to different fungicides revealed thatΔFgNsf1 exhibited increased sensitivity to carbendazim(MBC)and tebuconazole,and enhanced tolerance to fludioxonil and iprodione than PH-1 andΔFgNsf1-C.The virulence ofΔFgNsf1 to wheat coleoptiles and flowering wheat heads were dramatically decreased,which was consistent with the decrease in the yield of deoxynivalenol(DON).All of these defects were restored by target gene complementation.These results indicated that FgNsf1 plays a crucial role in vegetative growth,asexual and sexual reproduction,stress responses,fungicide sensitivity,and full virulence in F.graminearum.展开更多
Cellular stress responses are powerful mechanisms that prevent and cope with the accumulation of macromolecular damage in the cells and also boost host defenses against pathogens. Cells can initiate either protective ...Cellular stress responses are powerful mechanisms that prevent and cope with the accumulation of macromolecular damage in the cells and also boost host defenses against pathogens. Cells can initiate either protective or destructive stress responses depending, to a large extent, on the nature and duration of the stressing stimulus as well as the cell type. The productive replication of a virus within a given cell places inordinate stress on the metabolism machinery of the host and, to assure the continuity of its replication, many viruses have developed ways to modulate the cell stress responses. Poxviruses are among the viruses that have evolved a large number of strategies to manipulate host stress responses in order to control cell fate and enhance their replicative success. Remarkably, nearly every step of the stress responses that is mounted during infection can be targeted by virally encoded functions. The fine-tuned interactions between poxviruses and the host stress responses has aided virologists to understand specific aspects of viral replication; has helped cell biologists to evaluate the role of stress signaling in the uninfected cell; and has tipped immunologists on how these signals contribute to alert the cells against pathogen invasionand boost subsequent immune responses. This review discusses the diverse strategies that poxviruses use to subvert host cell stress responses.展开更多
Lipid phosphorylation by diacylglycerol kinase(DGK)that produces phosphatidic acid(PA)plays important roles in various biological processes,including stress responses,but the underlying mechanisms remain elusive.Here,...Lipid phosphorylation by diacylglycerol kinase(DGK)that produces phosphatidic acid(PA)plays important roles in various biological processes,including stress responses,but the underlying mechanisms remain elusive.Here,we show that DGK5 and its lipid product PA suppress ABA biosynthesis by interacting withABA-DEFICIENT2(ABA2),a key ABA biosynthesis enzyme,to negatively modulate plant responseto abiotic stress tested in Arabidopsis thaliana.Loss of DGK5 function rendered plants less damaged,whereas overexpression(OE)of DGK5 enhanced plant damage to water and salt stress.The dgk5 mutant plants exhibited decreased total cellular and nuclear levels of PA with increased levels of diacylglycerol,whereas DGK5-OE plants displayed the opposite effect.Interestingly,we found that both DGK5 and PA bind to the ABA-synthesizing enzyme ABA2 and suppress its enzymatic activity.Consistently,the dgk5 mutant plants exhibited increased levels of ABA,while DGK5-OE plants showed reduced ABA levels.In addition,we showed that both DGK5 and ABA2 are detected in and outside the nuclei,and loss of DGK5 function decreased the nuclear association of ABA2.We found that both DGK5 activity and PA promote nuclear association of ABA2.Taken together,these results indicate that both DGK5 and PA interact with ABA2 to inhibit its enzymatic activity and promote its nuclear sequestration,thereby sup-pressing ABA production in response to abiotic stress.Our study reveals a sophisticated mechanism by which DGK5 and PA regulate plant stress responses.展开更多
Stress Knowledge Map(SKM;https://skm.nib.si)is a publicly available resource containing two complementary knowledge graphs that describe the current knowledge of biochemical,signaling,and regulatory molecular interact...Stress Knowledge Map(SKM;https://skm.nib.si)is a publicly available resource containing two complementary knowledge graphs that describe the current knowledge of biochemical,signaling,and regulatory molecular interactions in plants:a highly curated model of plant stress signaling(PSS;543 reactions)and a large comprehensive knowledge network(488390 interactions).Both were constructed by domain experts through systematic curation of diverse literature and database resources.SKM provides a single entry point for investigations of plant stress response and related growth trade-offs,as well as interactive explorations of current knowledge.PSS is also formulated as a qualitative and quantitative model for systems biology and thus represents a starting point for a plant digital twin.Here,we describe the features of SKM and show,through two case studies,how it can be used for complex analyses,including systematic hypothesis generation and design of validation experiments,or to gain new insights into experimental observations in plant biology.展开更多
Ubiquitination/ubiquitylation,one of the most fundamental post-translational modifications,regulates almost every critical cellular process in eukaryotes.Emerging evidence has shown that essential components of numero...Ubiquitination/ubiquitylation,one of the most fundamental post-translational modifications,regulates almost every critical cellular process in eukaryotes.Emerging evidence has shown that essential components of numerous biological processes undergo ubiquitination in mammalian cells upon exposure to diverse stresses,from exogenous factors to cellular reactions,causing a dazzling variety of functional consequences.Various forms of ubiquitin sig-nals generated by ubiquitylation events in specific milieus,known as ubiquitin codes,constitute an intrinsic part of myriad cellular stress responses.These ubiquitination events,leading to proteolytic turnover of the substrates or just switch in functionality,initiate,regulate,or supervise multiple cellular stress-associated responses,supporting adaptation,homeostasis recovery,and survival of the stressed cells.In this review,we attempted to summarize the crucial roles of ubiquitination in response to different environmental and intracellular stresses,while discussing how stresses modulate the ubiquitin system.This review also updates the most recent advances in understanding ubiquitination machinery as well as different stress responses and discusses some important questions that may warrant future investigation.展开更多
Global warming impacts crop production and threatens food security.Elevated temperatures are sensed by different cell components.Temperature increases are classified as either mild warm temperatures or excessively hot...Global warming impacts crop production and threatens food security.Elevated temperatures are sensed by different cell components.Temperature increases are classified as either mild warm temperatures or excessively hot temperatures,which are perceived by distinct signaling pathways in plants.Warm temperatures induce thermomorphogenesis,while high-temperature stress triggers heat acclimation and has destructive effects on plant growth and development.In this review,we systematically summarize the heat-responsive genetic networks in Arabidopsis and crop plants based on recent studies.In addition,we highlight the strategies used to improve grain yield under heat stress from a source-sink perspective.We also discuss the remaining issues regarding the characteristics of thermosensors and the urgency required to explore the basis of acclimation under multifactorial stress combination.展开更多
Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotto...Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotton(Gossypium spp.).Here,we identified 40 ABC1Ks in upland cotton(Gossypium hirsutum L.)and found that the Gh ABC1Ks were unevenly distributed across 17 chromosomes.The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.The qRT-PCR results revealed that most Gh ABC1Ks were upregulated by exposure to different stresses.Gh ABC1K2-A05 and Gh ABC1K12-A07 expression levels were upregulated by at least three stress treatments.These genes were further functionally characterized by virus-induced gene silencing(VIGS).Compared with the controls,the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde(MDA)contents,lower catalase(CAT),peroxidase(POD)and superoxide dismutase(SOD)activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.In addition,the expression levels of six stress marker genes(Gh DREB2A,Gh SOS1,Gh CIPK6,Gh SOS2,Gh WRKY33,and Gh RD29A)were significantly downregulated after stress in the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced lines.The results indicate that knockdown of Gh ABC1K2-A05 and Gh ABC1K12-A07 make cotton more sensitive to salt and PEG stress.These findings can provide valuable information for intensive studies of Gh ABC1Ks in the responses and resistance of cotton to abiotic stresses.展开更多
The sessile nature of plants confines their responsiveness to changing environmental conditions.Gene expression regulation becomes a paramount mechanism for plants to adjust their physiological and morphological behav...The sessile nature of plants confines their responsiveness to changing environmental conditions.Gene expression regulation becomes a paramount mechanism for plants to adjust their physiological and morphological behaviors.Alternative polyadenylation(APA)is known for its capacity to augment transcriptome diversity and plasticity,thereby furnishing an additional set of tools for modulating gene expression.APA has also been demonstrated to exhibit intimate associations with plant stress responses.In this study,we review APA dynamic features and consequences in plants subjected to both biotic and abiotic stresses.These stresses include adverse environmental stresses,and pathogenic attacks,such as cadmium toxicity,high salt,hypoxia,oxidative stress,cold,heat shock,along with bacterial,fungal,and viral infections.We analyzed the overarching research framework employed to elucidate plant APA response and the alignment of polyadenylation site transitions with the modulation of gene expression levels within the ambit of each stress condition.We also proposed a general APA model where transacting factors,including poly(A)factors,epigenetic regulators,RNA m6A modification factors,and phase separation proteins,assume pivotal roles in APA related transcriptome plasticity during stress response in plants.展开更多
White Hypsizygus marmoreus is a popular edible mushroom.Its mycelium is easy to be contaminated by Penicillium,which leads to a decrease in its quality and yield.Penicillium could compete for limited space and nutrien...White Hypsizygus marmoreus is a popular edible mushroom.Its mycelium is easy to be contaminated by Penicillium,which leads to a decrease in its quality and yield.Penicillium could compete for limited space and nutrients through rapid growth and produce a variety of harmful gases,such as benzene,aldehydes,phenols,etc.,to inhibit the growth of H.marmoreus mycelium.A series of changes occurred in H.marmoreus proteome after contamination when detected by the label-free tandem mass spectrometry(MS/MS)technique.Some proteins with up-regulated expression worked together to participate in some processes,such as the non-toxic transformation of harmful gases,glutathione metabolism,histone modification,nucleotide excision repair,clearing misfolded proteins,and synthesizing glutamine,which were mainly used in response to biological stress.The proteins with down-regulated expression are mainly related to the processes of ribosome function,protein processing,spliceosome,carbon metabolism,glycolysis,and gluconeogenesis.The reduction in the function of these proteins affected the production of the cell components,which might be an adjustment to adapt to growth retardation.This study further enhanced the understanding of the biological stress response and the growth restriction adaptation mechanisms in edible fungi.It also provided a theoretical basis for protein function exploration and edible mushroom food safety research.展开更多
BACKGROUND Gastric cancer remains a leading cause of cancer-related mortality globally.Traditional open surgery for gastric cancer is often associated with significant morbidity and prolonged recovery.AIM To evaluate ...BACKGROUND Gastric cancer remains a leading cause of cancer-related mortality globally.Traditional open surgery for gastric cancer is often associated with significant morbidity and prolonged recovery.AIM To evaluate the effectiveness of laparoscopic minimally invasive surgery as an alternative to traditional open surgery for gastric cancer,focusing on its potential to reduce trauma,accelerate recovery,and achieve comparable oncological out-comes.METHODS This study retrospectively analyzed 203 patients with gastric cancer who underwent surgery at the Shanghai Health Medical College Affiliated Chongming Hospital from January 2020 to December 2023.The patients were divided into two groups:Minimally invasive surgery group(n=102),who underwent laparoscopic gastrectomy,and open surgery group(n=101),who underwent traditional open gastrectomy.We compared surgical indicators(surgical incision size,intraop-erative blood loss,surgical duration,and number of lymph nodes dissected),recovery parameters(time to first flatus,time to start eating,time to ambulation,and length of hospital stay),immune function(levels of IgA,IgG,and IgM),intestinal barrier function(levels of D-lactic acid and diamine oxidase),and stress response(levels of C-reactive protein,interleukin-6,and procalcitonin).RESULTS The minimally invasive surgery group demonstrated significantly better outcomes in terms of surgical indicators,including smaller incisions,less blood loss,shorter surgery time,and more lymph nodes dissected(P<0.05 for all).Recovery was also faster in the minimally invasive surgery group,with earlier return of bowel function,earlier initiation of diet,quicker mobilization,and shorter hospital stays(P<0.05 for all).Furthermore,patients in the minimally invasive surgery group had better preserved immune function,superior intestinal barrier function,and a less pronounced stress response postoperatively(P<0.05 for all).CONCLUSION Laparoscopic minimally invasive surgery for gastric cancer not only provides superior surgical indicators and faster recovery but also offers advantages in preserving immune function,protecting intestinal barrier function,and mitigating the stress response compared to traditional open surgery.These findings support the broader adoption of laparoscopic techniques in the management of gastric cancer.展开更多
Objective:To investigate the effects of Jiangan Xiaozhi Formula(JGXZ)on oxidative stress and inflammatory factors in patients with non-alcoholic fatty liver disease(NAFLD).Methods:Between September 2022 and December 2...Objective:To investigate the effects of Jiangan Xiaozhi Formula(JGXZ)on oxidative stress and inflammatory factors in patients with non-alcoholic fatty liver disease(NAFLD).Methods:Between September 2022 and December 2023,our hospital admitted a total of 58 patients with NAFLD.These patients were split into two groups at random:one for experimentation and the other for control.There were 27 patients in the experimental group at the end,compared to 26 in the control group,reasonable exercise,weight management,lipid regulation,and oral polyene phosphatidylcholine capsules(PPC).The experimental group received JGXZ in addition to the above treatments for 12 consecutive weeks.Changes in Traditional Chinese Medicine(TCM)syndrome scores,blood lipids,liver function indicators,the levels of oxidative stress markers,such as malondialdehyde(MDA),glutathione peroxidase(GSH-Px),and superoxide dismutase(SOD),as well as serum inflammatory factors,such as interleukin-6(IL-6),interleukin-8(IL-8),and tumor necrosis factor-α(TNF-α),were measured both before and after treatment.Results:After treatment,both groups showed significant reductions in TCM syndrome scores(P<0.05)and improvements in blood lipids,liver function indicators,inflammatory factors,and oxidative stress markers(P<0.05).Improvements were noticeably better in the experimental group than in the control group.(P<0.05).Conclusion:JGXZ can significantly improve clinical symptoms,regulate blood lipids,and protect liver function in patients with NAFLD.Its mechanism may be related to inhibiting inflammatory responses and regulating the balance of the oxidation-antioxidation system.展开更多
Environmental stress from climate change and agricultural activity threatens global plant biodiversity as well as crop yield and quality.As sessile organisms,plants must maintain the integrity of their genomes and adj...Environmental stress from climate change and agricultural activity threatens global plant biodiversity as well as crop yield and quality.As sessile organisms,plants must maintain the integrity of their genomes and adjust gene expression to adapt to various environmental changes.In eukaryotes,nucleosomes are the basic unit of chromatin around which genomic DNA is packaged by condensation.To enable dynamic access to packaged DNA,eukaryotes have evolved Snf2(sucrose nonfermenting 2)family proteins as chromatin remodeling factors(CHRs)that modulate the position of nucleosomes on chromatin.During plant stress responses,CHRs are recruited to specific genomic loci,where they regulate the distribution or composition of nucleosomes,which in turn alters the accessibility of these loci to general transcription or DNA damage repair machinery.Moreover,CHRs interplay with other epigenetic mechanisms,including DNA methylation,histone modifications,and deposition of histone variants.CHRs are also involved in RNA processing at the posttranscriptional level.In this review,we discuss major advances in our understanding of the mechanisms by which CHRs function during plants’response to environmental stress.展开更多
Transcription factors (TFs) play vital roles in various biological processes by binding to cis-acting elements to control expressions of their target genes. The MYB TF BplMYB46, from Betula platyphylla, is involved ...Transcription factors (TFs) play vital roles in various biological processes by binding to cis-acting elements to control expressions of their target genes. The MYB TF BplMYB46, from Betula platyphylla, is involved in abiotic stress responses and secondary wall deposition. In the present study, we used a TF-centered yeast onehybrid technology (TF-centered YIH) to identify the cis- acting elements bound by BplMYB46. We screened a shortinsert random library and identified three cis-elements bound by BplMYB46: an E-box (CA(A/T/C)(A/G/C)TG) and two novel motifs, a TO-box (T(GIA)TCG(C/G)) and a GT-box (A(G/T)T(AIC)GT(T/G)C). Chromatin immunoprecipitation (CHIP) and effector-reporter coexpression assays inNicotiana tabacum confirmed binding of BplMYB46 to the TC-box, GT-box, and E-box motifs in the promoters of the phenylalanine ammonia lyase (PAL), peroxidase (POD), and superoxide dismutase (SOD) genes, which function in abiotic stress tolerance and secondary wall biosynthesis. This finding improves our understanding of potential regulatory mechanisms in the response to abiotic stress and secondary wall deposition of BplMYB46 in B. platyphylla.展开更多
Phospholipids, including phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PC), phosphatidylserine (PS) and phosphoinositides, have emerged as an importan...Phospholipids, including phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PC), phosphatidylserine (PS) and phosphoinositides, have emerged as an important class of cellular messenger molecules in various cellular and physiological processes, of which PA attracts much attention of researchers. In addition to its effect on stimulating vesicle trafficking, many studies have demonstrated that PA plays a crucial role in various signaling pathways by binding target proteins and regulating their activity and subcellular localization. Here, we summarize the functional mechanisms and target proteins underlying PA-mediated regulation of cellular signaling, development, hormonal responses, and stress responses in plants.展开更多
Calcium-dependent protein kinases(CPKs)are serine/threonine protein kinases that function in plant stress responses. Although CPKs are recognized as key messengers in signal transduction, the specific roles of CPKs ...Calcium-dependent protein kinases(CPKs)are serine/threonine protein kinases that function in plant stress responses. Although CPKs are recognized as key messengers in signal transduction, the specific roles of CPKs and the molecular mechanisms underlying their activity remain largely unknown. Here, we characterized the function of Os CPK_(24), a cytosol-localized calciumdependent protein kinase in rice. Os CPK_(24) was universally and highly expressed in rice plants and was induced by cold treatment. Whereas Os CPK_(24) knockdown plants exhibited increased sensitivity to cold compared to wild type(WT), Os CPK_(24)-overexpressing plants exhibited increased cold tolerance. Plants overexpressing Os CPK_(24) exhibited increased accumulation of proline(an osmoprotectant) and glutathione(an antioxidant) and maintained a higher GSH/GSSG(reduced glutathione to oxidized glutathione) ratio during cold stress compared to WT. In addition to these effects in response to cold stress, we observed the kinase activity of Os CPK_(24) varied under different calcium concentrations. Further,Os CPK_(24) phosphorylated Os Grx_(10), a glutathionedependent thioltransferase, at rates modulated by changes in calcium concentration. Together, our results support the hypothesis that Os CPK_(24) functions as a positive regulator of cold stress tolerance in rice, a process mediated by calcium signaling and involving phosphorylation and the inhibition of Os Grx_(10) to sustain higher glutathione levels.展开更多
As the name reflects, integrative plant biology is the core topic of JIPB. In the past few years JIPB has been pursuing the development of this area, to assist the scientific community to bring together all possible r...As the name reflects, integrative plant biology is the core topic of JIPB. In the past few years JIPB has been pursuing the development of this area, to assist the scientific community to bring together all possible research tools to understand plant growth, development and stress responses in micro- and macro-scales. As part of these efforts, JIPB and Yantai University organized the 1st International Symposium on Integrative Plant Biology in the seaside town of Yantai during August 10-12, 2009 (Figure 1) The symposium was co-sponsored by Botanical Society of China, Chinese Society for Cell Biology, Genetics Society of China, and Chinese Society for Plant Physiology.展开更多
Tumor necrosis factor receptor-associated factor(TRAF)proteins are conserved in higher eukaryotes and play key roles in transducing cellular signals across different organelles.They are characterized by their C-termin...Tumor necrosis factor receptor-associated factor(TRAF)proteins are conserved in higher eukaryotes and play key roles in transducing cellular signals across different organelles.They are characterized by their C-terminal region(TRAF-C domain)containing seven to eight antiparallelβ-sheets,also known as the meprin and TRAF-C homology(MATH)domain.Over the past few decades,significant progress has been made toward understanding the diverse roles of TRAF proteins in mammals and plants.Compared to other eukaryotic species,the Arabidopsis thaliana and rice(Oryza sativa)genomes encode many more TRAF/MATH domaincontaining proteins;these plant proteins cluster into five classes:TRAF/MATH-only,MATH-BPM,MATH-UBP(ubiquitin protease),Seven in absentia(SINA),and MATH-Filament and MATHPEARLI-4 proteins,suggesting parallel evolution of TRAF proteins in plants.Increasing evidence now indicates that plant TRAF proteins form central signaling networks essential for multiple biological processes,such as vegetative and reproductive development,autophagosome formation,plant immunity,symbiosis,phytohormone signaling,and abiotic stress responses.Here,we summarize recent advances and highlight future prospects for understanding on the molecular mechanisms by which TRAF proteins act in plant development and stress responses.展开更多
The stress response is essential for animal self-defense and survival. However, species may exhibit stress response variation depending on their specific environmental and selection pressures. Blind cavefish dwell in ...The stress response is essential for animal self-defense and survival. However, species may exhibit stress response variation depending on their specific environmental and selection pressures. Blind cavefish dwell in cave environments, which differ markedly in stressors and resource availability compared to surface aquatic environments. However, whether blind cavefish exhibit differences in stress response as an adaptation to their cave environments remains unclear. Here, we investigated differences in stress response in six closely related Triplophysa species, including three blind cavefish (T. longibarbata, T. jiarongensis, and T. rosa) and three normal-sighted river fish (T. nasobarbatula, T. dongsaiensis, and T. bleekeri). Results showed that blind cavefish exhibited a range of distinct behavioral responses compared to sighted river fish, including greater levels of activity, shorter duration of freezing, absence of erratic movements or thrashing behavior, and opposite behavioral trends over time. Furthermore, the cavefish species demonstrated attenuated increases in metabolic rate in response to stressors related to novel environments. Cave-dwelling T. rosa also exhibited lower basal hypothalamic-pituitary-inter-renal (HPI) axis-related gene expression levels and stress hormone concentrations compared to river-dwelling T. bleekeri. These results suggest that blind cavefish may have lost their behavioral stress response, potentially mediated by a reduction in basal activity of the HPI axis, thus enabling the conservation of energy by reducing unnecessary expenditure in energy-limited caves.展开更多
基金Supported by Project of Guangxi Health and Health Commission,No.Z20201268。
文摘BACKGROUND Radical gastrectomy(RG)is commonly used in the treatment of patients with gastric cancer(GC),but this procedure may lead to stress responses,postoperative cognitive dysfunction,and blood coagulation abnormalities in patients.AIM To investigate the influences of dexmedetomidine(DEX)on stress responses and postoperative cognitive and coagulation functions in patients undergoing RG under general anesthesia(GA).METHODS One hundred and two patients undergoing RG for GC under GA from February 2020 to February 2022 were retrospectively reviewed.Of these,50 patients had received conventional anesthesia intervention[control group(CG)]and 52 patients had received DEX in addition to routine anesthesia intervention[observation group(OG)].Inflammatory factor(IFs;tumor necrosis factor-α,TNF-α;interleukin-6,IL-6),stress responses(cortisol,Cor;adrenocorticotropic hormone,ACTH),cognitive function(CF;Mini-Mental State Examination,MMSE),neurological function(neuron-specific enolase,NSE;S100 calciumbinding protein B,S100B),and coagulation function(prothrombin time,PT;thromboxane B2,TXB2;fibrinogen,FIB)were compared between the two groups before surgery(T0),as well as at 6 h(T1)and 24 h(T2)after surgery.RESULTS Compared with T0,TNF-α,IL-6,Cor,ACTH,NSE,S100B,PT,TXB2,and FIB showed a significant increase in both groups at T1 and T2,but with even lower levels in OG vs CG.Both groups showed a significant reduction in the MMSE score at T1 and T2 compared with T0,but the MMSE score was notably higher in OG compared with CG.CONCLUSION In addition to a potent inhibitory effect on postoperative IFs and stress responses in GC patients undergoing RG under GA,DEX may also alleviate the coagulation dysfunction and improve the postoperative CF of these patients.
基金funded by the National Key Research and Development Program of China (2021YFF1000302,2022YFF1003500, and 2022YFF1002400)the Fundamental Research Funds for the Central Universities of China (FRF-IDRY-20-038 and 06500136)the National Natural Science Foundation of China (31971958)。
文摘Plant male reproduction is a fine-tuned developmental process that is susceptible to stressful environments and influences crop grain yields.Phytohormone signaling functions in control of plant normal growth and development as well as in response to external stresses,but the interaction or crosstalk among phytohormone signaling,stress response,and male reproduction in plants remains poorly understood.Cross-species comparison among 514 stress-response transcriptomic libraries revealed that ms33-6038,a genic male sterile mutant deficient in the Zm Ms33/Zm GPAT6 gene,displayed an excessive drought stress-like transcriptional reprogramming in anthers triggered mainly by disturbed jasmonic acid(JA)homeostasis.An increased level of JA appeared in Zm Ms33-deficient anthers at both meiotic and postmeiotic stages and activated genes involved in JA biosynthesis and signaling as well as genes functioning in JA-mediated drought response.Excessive accumulation of JA elevated expression level of a gene encoding a WRKY transcription factor that activated the Zm Ms33 promoter.These findings reveal a feedback loop of Zm Ms33-JA-WRKY-Zm Ms33 in controlling male sterility and JA-mediated stress response in maize,shedding light on the crosstalk of stress response and male sterility mediated by phytohormone homeostasis and signaling.
基金This work was supported by the National Key Research&Development Program of China(2016YED0201007,2018YFD0201201 and 2018YFD0201000)the National Natural Science Foundation of China(31672065)+1 种基金the Agricultural Science and Technology Projects of Jiangsu Province,China(BE2018378,BA2018039,PZCZ201715,CX(19)3003,and CX(18)2005)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(KYCX18_0670).
文摘Nutrient and stress factor 1(Nsf1),a transcription factor containing the classical Cys2-His2(C_(2)H_(2))zinc finger motif,is expressed under non-fermentable carbon conditions and in response to salt stress in Saccharomyces cerevisiae.However,the role of Nsf1 in filamentous fungi is not well understood.In this study,the orthologue of Nsf1 was investigated in Fusarium graminearum(named FgNsf1),a causal agent of Fusarium head blight(FHB).The functions of FgNsf1 were evaluated by constructing a FgNSF1 deletion mutant,designated asΔFgNsf1,and its functional complementation mutantΔFgNsf1-C.Gene deletion experiments showed that the mycelial growth rate,asexual and sexual reproduction ofΔFgNsf1 were significantly reduced,but the pigment production ofΔFgNsf1 was remarkably increased compared with the PH-1 andΔFgNsf1-C.In addition,the tolerance ofΔFgNsf1 to osmotic pressures,cell wall-damaging agents and oxidative stress increased significantly.Sensitivity tests to different fungicides revealed thatΔFgNsf1 exhibited increased sensitivity to carbendazim(MBC)and tebuconazole,and enhanced tolerance to fludioxonil and iprodione than PH-1 andΔFgNsf1-C.The virulence ofΔFgNsf1 to wheat coleoptiles and flowering wheat heads were dramatically decreased,which was consistent with the decrease in the yield of deoxynivalenol(DON).All of these defects were restored by target gene complementation.These results indicated that FgNsf1 plays a crucial role in vegetative growth,asexual and sexual reproduction,stress responses,fungicide sensitivity,and full virulence in F.graminearum.
文摘Cellular stress responses are powerful mechanisms that prevent and cope with the accumulation of macromolecular damage in the cells and also boost host defenses against pathogens. Cells can initiate either protective or destructive stress responses depending, to a large extent, on the nature and duration of the stressing stimulus as well as the cell type. The productive replication of a virus within a given cell places inordinate stress on the metabolism machinery of the host and, to assure the continuity of its replication, many viruses have developed ways to modulate the cell stress responses. Poxviruses are among the viruses that have evolved a large number of strategies to manipulate host stress responses in order to control cell fate and enhance their replicative success. Remarkably, nearly every step of the stress responses that is mounted during infection can be targeted by virally encoded functions. The fine-tuned interactions between poxviruses and the host stress responses has aided virologists to understand specific aspects of viral replication; has helped cell biologists to evaluate the role of stress signaling in the uninfected cell; and has tipped immunologists on how these signals contribute to alert the cells against pathogen invasionand boost subsequent immune responses. This review discusses the diverse strategies that poxviruses use to subvert host cell stress responses.
基金Research reported in this article was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R01GM141374 and the National Science Foundation grants 2222157 and 2302424.
文摘Lipid phosphorylation by diacylglycerol kinase(DGK)that produces phosphatidic acid(PA)plays important roles in various biological processes,including stress responses,but the underlying mechanisms remain elusive.Here,we show that DGK5 and its lipid product PA suppress ABA biosynthesis by interacting withABA-DEFICIENT2(ABA2),a key ABA biosynthesis enzyme,to negatively modulate plant responseto abiotic stress tested in Arabidopsis thaliana.Loss of DGK5 function rendered plants less damaged,whereas overexpression(OE)of DGK5 enhanced plant damage to water and salt stress.The dgk5 mutant plants exhibited decreased total cellular and nuclear levels of PA with increased levels of diacylglycerol,whereas DGK5-OE plants displayed the opposite effect.Interestingly,we found that both DGK5 and PA bind to the ABA-synthesizing enzyme ABA2 and suppress its enzymatic activity.Consistently,the dgk5 mutant plants exhibited increased levels of ABA,while DGK5-OE plants showed reduced ABA levels.In addition,we showed that both DGK5 and ABA2 are detected in and outside the nuclei,and loss of DGK5 function decreased the nuclear association of ABA2.We found that both DGK5 activity and PA promote nuclear association of ABA2.Taken together,these results indicate that both DGK5 and PA interact with ABA2 to inhibit its enzymatic activity and promote its nuclear sequestration,thereby sup-pressing ABA production in response to abiotic stress.Our study reveals a sophisticated mechanism by which DGK5 and PA regulate plant stress responses.
基金funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 862858(ADAPT)the Slovenian Research Agency under grant agreements 1000-15-0105,Z7-1888,J4-1777,P4-0165,N4-0199,Z4-50146,and J4-3089ELIXIR,the research infrastructure for life science data through the ELIXIR Implementation Study“Increasing plant data findability for ELIXIR and beyond”and ELIXIR-SI.We gratefully acknowledge funding from the Deutsche Forschungsgemeinschaft(DFG)to U.C.V.(INST 217/939-1 FUGG).
文摘Stress Knowledge Map(SKM;https://skm.nib.si)is a publicly available resource containing two complementary knowledge graphs that describe the current knowledge of biochemical,signaling,and regulatory molecular interactions in plants:a highly curated model of plant stress signaling(PSS;543 reactions)and a large comprehensive knowledge network(488390 interactions).Both were constructed by domain experts through systematic curation of diverse literature and database resources.SKM provides a single entry point for investigations of plant stress response and related growth trade-offs,as well as interactive explorations of current knowledge.PSS is also formulated as a qualitative and quantitative model for systems biology and thus represents a starting point for a plant digital twin.Here,we describe the features of SKM and show,through two case studies,how it can be used for complex analyses,including systematic hypothesis generation and design of validation experiments,or to gain new insights into experimental observations in plant biology.
基金supported by the grants from the National Natural Science Foundation of China(Nos.92253302 and 32171216)the Ministry of Science and Technology of China(No.2019YFA0802103)+3 种基金the National Science and Technology Innovation 2030 Major Project of China(Nos.2021ZD0203900 and 2022ZD0212600)the Department of Science and Technology of Zhejiang Province(No.2021C03104)the Guangzhou Science Innovation and Development Program(No.201803010092)the Shenzhen-Hong Kong Institute of Brain Science(No.NYKFKT2019006).
文摘Ubiquitination/ubiquitylation,one of the most fundamental post-translational modifications,regulates almost every critical cellular process in eukaryotes.Emerging evidence has shown that essential components of numerous biological processes undergo ubiquitination in mammalian cells upon exposure to diverse stresses,from exogenous factors to cellular reactions,causing a dazzling variety of functional consequences.Various forms of ubiquitin sig-nals generated by ubiquitylation events in specific milieus,known as ubiquitin codes,constitute an intrinsic part of myriad cellular stress responses.These ubiquitination events,leading to proteolytic turnover of the substrates or just switch in functionality,initiate,regulate,or supervise multiple cellular stress-associated responses,supporting adaptation,homeostasis recovery,and survival of the stressed cells.In this review,we attempted to summarize the crucial roles of ubiquitination in response to different environmental and intracellular stresses,while discussing how stresses modulate the ubiquitin system.This review also updates the most recent advances in understanding ubiquitination machinery as well as different stress responses and discusses some important questions that may warrant future investigation.
基金supported by the Shanghai Pujiang Program(22PJ1406500)the Shanghai Jiao Tong University 2030 Initiative(WH510363001-11)+3 种基金the National Natural Science Foundation of China(32388201 and 32201705)the Chinese Academy of Sciences(XDB27010104)the Laboratory of Lingnan Modern Agriculture Project(NT2021002)a project funded by the China Postdoctoral Science Foundation(2022T150648).
文摘Global warming impacts crop production and threatens food security.Elevated temperatures are sensed by different cell components.Temperature increases are classified as either mild warm temperatures or excessively hot temperatures,which are perceived by distinct signaling pathways in plants.Warm temperatures induce thermomorphogenesis,while high-temperature stress triggers heat acclimation and has destructive effects on plant growth and development.In this review,we systematically summarize the heat-responsive genetic networks in Arabidopsis and crop plants based on recent studies.In addition,we highlight the strategies used to improve grain yield under heat stress from a source-sink perspective.We also discuss the remaining issues regarding the characteristics of thermosensors and the urgency required to explore the basis of acclimation under multifactorial stress combination.
基金supported by the State Key Laboratory of Aridland Crop Science,Gansu Agricultural University,China(GSCS-2019-10)the National Natural Science Foundation of China(31801414 and 32260478)+2 种基金the Gansu Province Science and Technology Program,China(20JR10RA531)the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2022D01E103)the Education Technology Innovation Project of Gansu Province,China(2022QB-076)。
文摘Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotton(Gossypium spp.).Here,we identified 40 ABC1Ks in upland cotton(Gossypium hirsutum L.)and found that the Gh ABC1Ks were unevenly distributed across 17 chromosomes.The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.The qRT-PCR results revealed that most Gh ABC1Ks were upregulated by exposure to different stresses.Gh ABC1K2-A05 and Gh ABC1K12-A07 expression levels were upregulated by at least three stress treatments.These genes were further functionally characterized by virus-induced gene silencing(VIGS).Compared with the controls,the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde(MDA)contents,lower catalase(CAT),peroxidase(POD)and superoxide dismutase(SOD)activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.In addition,the expression levels of six stress marker genes(Gh DREB2A,Gh SOS1,Gh CIPK6,Gh SOS2,Gh WRKY33,and Gh RD29A)were significantly downregulated after stress in the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced lines.The results indicate that knockdown of Gh ABC1K2-A05 and Gh ABC1K12-A07 make cotton more sensitive to salt and PEG stress.These findings can provide valuable information for intensive studies of Gh ABC1Ks in the responses and resistance of cotton to abiotic stresses.
基金Open access funding provided by Shanghai Jiao Tong Universityfunded in part by the National Nature Science Foundation of China(grant#32270344).
文摘The sessile nature of plants confines their responsiveness to changing environmental conditions.Gene expression regulation becomes a paramount mechanism for plants to adjust their physiological and morphological behaviors.Alternative polyadenylation(APA)is known for its capacity to augment transcriptome diversity and plasticity,thereby furnishing an additional set of tools for modulating gene expression.APA has also been demonstrated to exhibit intimate associations with plant stress responses.In this study,we review APA dynamic features and consequences in plants subjected to both biotic and abiotic stresses.These stresses include adverse environmental stresses,and pathogenic attacks,such as cadmium toxicity,high salt,hypoxia,oxidative stress,cold,heat shock,along with bacterial,fungal,and viral infections.We analyzed the overarching research framework employed to elucidate plant APA response and the alignment of polyadenylation site transitions with the modulation of gene expression levels within the ambit of each stress condition.We also proposed a general APA model where transacting factors,including poly(A)factors,epigenetic regulators,RNA m6A modification factors,and phase separation proteins,assume pivotal roles in APA related transcriptome plasticity during stress response in plants.
基金funded by the Shandong Provincial Natural Science Foundation,China (ZR2020QC005)the National Natural Science Foundation of China (32272789)+3 种基金the National Natural Science Foundation of China (32000041)the Shandong Edible Fungus Agricultural Technology System (SDAIT-07-02)the Shandong Provincial Key Research and Development Plan (2021ZDSYS28)the Qingdao Agricultural University Scientific Research Foundation (6631120076)。
文摘White Hypsizygus marmoreus is a popular edible mushroom.Its mycelium is easy to be contaminated by Penicillium,which leads to a decrease in its quality and yield.Penicillium could compete for limited space and nutrients through rapid growth and produce a variety of harmful gases,such as benzene,aldehydes,phenols,etc.,to inhibit the growth of H.marmoreus mycelium.A series of changes occurred in H.marmoreus proteome after contamination when detected by the label-free tandem mass spectrometry(MS/MS)technique.Some proteins with up-regulated expression worked together to participate in some processes,such as the non-toxic transformation of harmful gases,glutathione metabolism,histone modification,nucleotide excision repair,clearing misfolded proteins,and synthesizing glutamine,which were mainly used in response to biological stress.The proteins with down-regulated expression are mainly related to the processes of ribosome function,protein processing,spliceosome,carbon metabolism,glycolysis,and gluconeogenesis.The reduction in the function of these proteins affected the production of the cell components,which might be an adjustment to adapt to growth retardation.This study further enhanced the understanding of the biological stress response and the growth restriction adaptation mechanisms in edible fungi.It also provided a theoretical basis for protein function exploration and edible mushroom food safety research.
基金Shanghai Chongming District Sustainable Development Science and Technology Innovation Action Plan,No.CKY2020-11.
文摘BACKGROUND Gastric cancer remains a leading cause of cancer-related mortality globally.Traditional open surgery for gastric cancer is often associated with significant morbidity and prolonged recovery.AIM To evaluate the effectiveness of laparoscopic minimally invasive surgery as an alternative to traditional open surgery for gastric cancer,focusing on its potential to reduce trauma,accelerate recovery,and achieve comparable oncological out-comes.METHODS This study retrospectively analyzed 203 patients with gastric cancer who underwent surgery at the Shanghai Health Medical College Affiliated Chongming Hospital from January 2020 to December 2023.The patients were divided into two groups:Minimally invasive surgery group(n=102),who underwent laparoscopic gastrectomy,and open surgery group(n=101),who underwent traditional open gastrectomy.We compared surgical indicators(surgical incision size,intraop-erative blood loss,surgical duration,and number of lymph nodes dissected),recovery parameters(time to first flatus,time to start eating,time to ambulation,and length of hospital stay),immune function(levels of IgA,IgG,and IgM),intestinal barrier function(levels of D-lactic acid and diamine oxidase),and stress response(levels of C-reactive protein,interleukin-6,and procalcitonin).RESULTS The minimally invasive surgery group demonstrated significantly better outcomes in terms of surgical indicators,including smaller incisions,less blood loss,shorter surgery time,and more lymph nodes dissected(P<0.05 for all).Recovery was also faster in the minimally invasive surgery group,with earlier return of bowel function,earlier initiation of diet,quicker mobilization,and shorter hospital stays(P<0.05 for all).Furthermore,patients in the minimally invasive surgery group had better preserved immune function,superior intestinal barrier function,and a less pronounced stress response postoperatively(P<0.05 for all).CONCLUSION Laparoscopic minimally invasive surgery for gastric cancer not only provides superior surgical indicators and faster recovery but also offers advantages in preserving immune function,protecting intestinal barrier function,and mitigating the stress response compared to traditional open surgery.These findings support the broader adoption of laparoscopic techniques in the management of gastric cancer.
基金supported by National Natural Science Foundation of China,Youth Science Fund Project(82104820)Zhejiang Natural Science Foundation Project(LTGY23H270009)+1 种基金Applied Basic Research Project of Jiaxing Science and Technology Bureau(2023AY11035)Applied Basic Research Project of Jiaxing Science and Technology Bureau(2023AD11047).
文摘Objective:To investigate the effects of Jiangan Xiaozhi Formula(JGXZ)on oxidative stress and inflammatory factors in patients with non-alcoholic fatty liver disease(NAFLD).Methods:Between September 2022 and December 2023,our hospital admitted a total of 58 patients with NAFLD.These patients were split into two groups at random:one for experimentation and the other for control.There were 27 patients in the experimental group at the end,compared to 26 in the control group,reasonable exercise,weight management,lipid regulation,and oral polyene phosphatidylcholine capsules(PPC).The experimental group received JGXZ in addition to the above treatments for 12 consecutive weeks.Changes in Traditional Chinese Medicine(TCM)syndrome scores,blood lipids,liver function indicators,the levels of oxidative stress markers,such as malondialdehyde(MDA),glutathione peroxidase(GSH-Px),and superoxide dismutase(SOD),as well as serum inflammatory factors,such as interleukin-6(IL-6),interleukin-8(IL-8),and tumor necrosis factor-α(TNF-α),were measured both before and after treatment.Results:After treatment,both groups showed significant reductions in TCM syndrome scores(P<0.05)and improvements in blood lipids,liver function indicators,inflammatory factors,and oxidative stress markers(P<0.05).Improvements were noticeably better in the experimental group than in the control group.(P<0.05).Conclusion:JGXZ can significantly improve clinical symptoms,regulate blood lipids,and protect liver function in patients with NAFLD.Its mechanism may be related to inhibiting inflammatory responses and regulating the balance of the oxidation-antioxidation system.
基金financially supported by grants from the National Natural Science Foundation of China(31970287,31800210,and 31625004)。
文摘Environmental stress from climate change and agricultural activity threatens global plant biodiversity as well as crop yield and quality.As sessile organisms,plants must maintain the integrity of their genomes and adjust gene expression to adapt to various environmental changes.In eukaryotes,nucleosomes are the basic unit of chromatin around which genomic DNA is packaged by condensation.To enable dynamic access to packaged DNA,eukaryotes have evolved Snf2(sucrose nonfermenting 2)family proteins as chromatin remodeling factors(CHRs)that modulate the position of nucleosomes on chromatin.During plant stress responses,CHRs are recruited to specific genomic loci,where they regulate the distribution or composition of nucleosomes,which in turn alters the accessibility of these loci to general transcription or DNA damage repair machinery.Moreover,CHRs interplay with other epigenetic mechanisms,including DNA methylation,histone modifications,and deposition of histone variants.CHRs are also involved in RNA processing at the posttranscriptional level.In this review,we discuss major advances in our understanding of the mechanisms by which CHRs function during plants’response to environmental stress.
基金supported by two grants from the National Natural Science Foundation of China (31470671 and 31700587)
文摘Transcription factors (TFs) play vital roles in various biological processes by binding to cis-acting elements to control expressions of their target genes. The MYB TF BplMYB46, from Betula platyphylla, is involved in abiotic stress responses and secondary wall deposition. In the present study, we used a TF-centered yeast onehybrid technology (TF-centered YIH) to identify the cis- acting elements bound by BplMYB46. We screened a shortinsert random library and identified three cis-elements bound by BplMYB46: an E-box (CA(A/T/C)(A/G/C)TG) and two novel motifs, a TO-box (T(GIA)TCG(C/G)) and a GT-box (A(G/T)T(AIC)GT(T/G)C). Chromatin immunoprecipitation (CHIP) and effector-reporter coexpression assays inNicotiana tabacum confirmed binding of BplMYB46 to the TC-box, GT-box, and E-box motifs in the promoters of the phenylalanine ammonia lyase (PAL), peroxidase (POD), and superoxide dismutase (SOD) genes, which function in abiotic stress tolerance and secondary wall biosynthesis. This finding improves our understanding of potential regulatory mechanisms in the response to abiotic stress and secondary wall deposition of BplMYB46 in B. platyphylla.
基金supported by the National Natural Science Foundation of China(31721001 and 31400261)the“Ten Thousand Talent Program”Collaborative Innovation Center of Crop Stress Biology,Henan Province
文摘Phospholipids, including phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PC), phosphatidylserine (PS) and phosphoinositides, have emerged as an important class of cellular messenger molecules in various cellular and physiological processes, of which PA attracts much attention of researchers. In addition to its effect on stimulating vesicle trafficking, many studies have demonstrated that PA plays a crucial role in various signaling pathways by binding target proteins and regulating their activity and subcellular localization. Here, we summarize the functional mechanisms and target proteins underlying PA-mediated regulation of cellular signaling, development, hormonal responses, and stress responses in plants.
基金funded by the National Natural Science Foundation of China (31571753)the National High Technology Research and Development Program of China
文摘Calcium-dependent protein kinases(CPKs)are serine/threonine protein kinases that function in plant stress responses. Although CPKs are recognized as key messengers in signal transduction, the specific roles of CPKs and the molecular mechanisms underlying their activity remain largely unknown. Here, we characterized the function of Os CPK_(24), a cytosol-localized calciumdependent protein kinase in rice. Os CPK_(24) was universally and highly expressed in rice plants and was induced by cold treatment. Whereas Os CPK_(24) knockdown plants exhibited increased sensitivity to cold compared to wild type(WT), Os CPK_(24)-overexpressing plants exhibited increased cold tolerance. Plants overexpressing Os CPK_(24) exhibited increased accumulation of proline(an osmoprotectant) and glutathione(an antioxidant) and maintained a higher GSH/GSSG(reduced glutathione to oxidized glutathione) ratio during cold stress compared to WT. In addition to these effects in response to cold stress, we observed the kinase activity of Os CPK_(24) varied under different calcium concentrations. Further,Os CPK_(24) phosphorylated Os Grx_(10), a glutathionedependent thioltransferase, at rates modulated by changes in calcium concentration. Together, our results support the hypothesis that Os CPK_(24) functions as a positive regulator of cold stress tolerance in rice, a process mediated by calcium signaling and involving phosphorylation and the inhibition of Os Grx_(10) to sustain higher glutathione levels.
文摘As the name reflects, integrative plant biology is the core topic of JIPB. In the past few years JIPB has been pursuing the development of this area, to assist the scientific community to bring together all possible research tools to understand plant growth, development and stress responses in micro- and macro-scales. As part of these efforts, JIPB and Yantai University organized the 1st International Symposium on Integrative Plant Biology in the seaside town of Yantai during August 10-12, 2009 (Figure 1) The symposium was co-sponsored by Botanical Society of China, Chinese Society for Cell Biology, Genetics Society of China, and Chinese Society for Plant Physiology.
基金supported by the Key Realm R&D Program of Guangdong Province(Project 2020B0202090001)the National Natural Science Foundation of China(projects 31725004 and 31800217)+1 种基金the Natural Science Foundation of Guangdong Province(Project 2018A030313210)China Postdoctoral Science Foundation(Project 2021M693667)。
文摘Tumor necrosis factor receptor-associated factor(TRAF)proteins are conserved in higher eukaryotes and play key roles in transducing cellular signals across different organelles.They are characterized by their C-terminal region(TRAF-C domain)containing seven to eight antiparallelβ-sheets,also known as the meprin and TRAF-C homology(MATH)domain.Over the past few decades,significant progress has been made toward understanding the diverse roles of TRAF proteins in mammals and plants.Compared to other eukaryotic species,the Arabidopsis thaliana and rice(Oryza sativa)genomes encode many more TRAF/MATH domaincontaining proteins;these plant proteins cluster into five classes:TRAF/MATH-only,MATH-BPM,MATH-UBP(ubiquitin protease),Seven in absentia(SINA),and MATH-Filament and MATHPEARLI-4 proteins,suggesting parallel evolution of TRAF proteins in plants.Increasing evidence now indicates that plant TRAF proteins form central signaling networks essential for multiple biological processes,such as vegetative and reproductive development,autophagosome formation,plant immunity,symbiosis,phytohormone signaling,and abiotic stress responses.Here,we summarize recent advances and highlight future prospects for understanding on the molecular mechanisms by which TRAF proteins act in plant development and stress responses.
基金supported by the National Natural Science Foundation of China(32070438)。
文摘The stress response is essential for animal self-defense and survival. However, species may exhibit stress response variation depending on their specific environmental and selection pressures. Blind cavefish dwell in cave environments, which differ markedly in stressors and resource availability compared to surface aquatic environments. However, whether blind cavefish exhibit differences in stress response as an adaptation to their cave environments remains unclear. Here, we investigated differences in stress response in six closely related Triplophysa species, including three blind cavefish (T. longibarbata, T. jiarongensis, and T. rosa) and three normal-sighted river fish (T. nasobarbatula, T. dongsaiensis, and T. bleekeri). Results showed that blind cavefish exhibited a range of distinct behavioral responses compared to sighted river fish, including greater levels of activity, shorter duration of freezing, absence of erratic movements or thrashing behavior, and opposite behavioral trends over time. Furthermore, the cavefish species demonstrated attenuated increases in metabolic rate in response to stressors related to novel environments. Cave-dwelling T. rosa also exhibited lower basal hypothalamic-pituitary-inter-renal (HPI) axis-related gene expression levels and stress hormone concentrations compared to river-dwelling T. bleekeri. These results suggest that blind cavefish may have lost their behavioral stress response, potentially mediated by a reduction in basal activity of the HPI axis, thus enabling the conservation of energy by reducing unnecessary expenditure in energy-limited caves.