期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Antiplane shear crack in a prestressed elastic medium based on the couple stress theory
1
作者 Jian CHEN Yawei WANG Xianfang LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第4期583-602,共20页
A prestressed elastic medium containing a mode-Ⅲcrack is studied by means of the couple stress theory(CST).Based on the CST under initial stresses,a governing differential equation along with a mixed boundary value p... A prestressed elastic medium containing a mode-Ⅲcrack is studied by means of the couple stress theory(CST).Based on the CST under initial stresses,a governing differential equation along with a mixed boundary value problem is established.The singularities of the couple stress and force stress near the crack tips are analyzed through the asymptotic crack-tip fields resulting from the characteristic expansion method.To determine their intensity,a hypersingular integral equation is derived and numerically solved with the help of the Chebyshev polynomial.The obtained results show a strong size-dependence of the out-of-plane displacement on the crack and the couple stress intensity factor(CSIF)and the force stress intensity factor(FSIF)around the crack tips.The symmetric part of the shear stress has no singularity,and the skew-symmetric part related to the couple stress exhibits an r^(-3/2)singularity,in which r is the distance from the crack tip.The initial stresses also affect the crack tearing displacement and the CSIF and FSIF. 展开更多
关键词 couple stress theory(CST) initial stress antiplane shear crack SINGULARITY hypersingular integral equation
下载PDF
Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect 被引量:5
2
作者 Maryam Lori Dehsaraji Mohammad Arefi Abbas Loghman 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期119-134,共16页
Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform... Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform temperature rising.Size dependency is included in governing equations based on the modified couple stress theory.Hamilton’s principle is used to derive governing equations of the cylindrical micro/nano shell.Solution procedure is developed using Navier technique for simply-supported boundary conditions.The numerical results are presented to investigate the effect of significant parameters such as some dimensionless geometric parameters,material properties,applied voltages and temperature rising on the free vibration responses. 展开更多
关键词 Thickness stretching effect Shear and normal deformation theory Vibration analysis Length scale parameter Modified couple stress theory
下载PDF
Linear and nonlinear torsional free vibration of functionally graded micro/nano-tubes based on modified couple stress theory 被引量:2
3
作者 A.R.SETOODEH M.REZAEI M.R.ZENDEHDEL SHAHRI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第6期725-740,共16页
The linear and nonlinear torsional free vibration analyses of functionMly graded micro/nuno-tubes (FGMTs) are analytically investigated based on the couple stress theory. The employed non-classical continuum theory ... The linear and nonlinear torsional free vibration analyses of functionMly graded micro/nuno-tubes (FGMTs) are analytically investigated based on the couple stress theory. The employed non-classical continuum theory contains one material length scale parameter, which can capture the small scale effect. The FGMT model accounts for the through-radius power-law variation of a two-constituent material. Hamilton's principle is used to develop the non-classical nonlinear governing equation. To study the effect of the boundary conditions, two types of end conditions, i.e., fixed-fixed and fixed-free, are considered. The derived boundary value governing equation is of the fourthorder, and is solved by the homotopy analysis method (HAM). This method is based on the Taylor series with an embedded parameter and is capable of providing very good approximations by means of only a few terms, if the initial guess and the auxiliary linear operator are properly selected. The analytical expressions are developed for the linear and nonlinear natural frequencies, which can be conveniently used to investigate the effects of the dimensionless length scale parameter, the material gradient index, and the vibration amplitude on the natural frequencies of FGMTs. 展开更多
关键词 torsional vibration nonlinear vibration micro/nano-tube functionallygraded material (FGM) couple stress theory size effect
下载PDF
RENEWAL OF BASIC LAWS AND PRINCIPLES FOR POLAR CON-TINUUM THEORIES (Ⅱ)—MICROMORPHIC CONTINUUM THEORY AND COUPLE STRESS THEORY 被引量:2
4
作者 戴天民 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第10期1126-1133,共8页
The purpose is to reestablish the balance laws of momentum, angular momentum and energy and to derive the corresponding local and nonlocal balance equations for micromorphic continuum mechanics and couple stress theor... The purpose is to reestablish the balance laws of momentum, angular momentum and energy and to derive the corresponding local and nonlocal balance equations for micromorphic continuum mechanics and couple stress theory. The desired results for micromorphic continuum mechanics and couple stress theory are naturally obtained via direct transitions and reductions from the coupled conservation law of energy for micropolar continuum theory, respectively. The basic balance laws and equations for micromorphic continuum mechanics and couple stress theory are constituted by combining these results derived here and the traditional conservation laws and equations of mass and microinertia and the entropy inequality. The incomplete degrees of the former related continuum theories are clarified. Finally, some special cases are conveniently derived. 展开更多
关键词 micromorphic continuum couple stress theory COUPLED basic balance law balance equation
下载PDF
A Size-Dependent Functionally Graded Higher Order Plate Analysis Based on Modified Couple Stress Theory and Moving Kriging Meshfree Method 被引量:3
5
作者 T.D.Tran Chien H.Thai H.Nguyen-Xuan 《Computers, Materials & Continua》 SCIE EI 2018年第12期447-483,共37页
A size-dependent computational approach for bending,free vibration and buckling analyses of isotropic and sandwich functionally graded(FG)microplates is in this study presented.We consider both shear deformation and s... A size-dependent computational approach for bending,free vibration and buckling analyses of isotropic and sandwich functionally graded(FG)microplates is in this study presented.We consider both shear deformation and small scale effects through the generalized higher order shear deformation theory and modified couple stress theory(MCST).The present model only retains a single material length scale parameter for capturing properly size effects.A rule of mixture is used to model material properties varying through the thickness of plates.The principle of virtual work is used to derive the discrete system equations which are approximated by moving Kriging interpolation(MKI)meshfree method.Numerical examples consider the inclusions of geometrical parameters,volume fraction,boundary conditions and material length scale parameter.Reliability and effectiveness of the present method are confirmed through numerical results. 展开更多
关键词 Modified couple stress theory isotropic and sandwich FGM plates moving Kriging meshfree method
下载PDF
Nonlinearity analysis of piezoelectric micromachined ultrasonic transducers based on couple stress theory 被引量:4
6
作者 Xin Kang Fu-Jun Yang Xiao-Yuan He 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期104-111,共8页
This paper studies the static deformation behavior of a piezoelectric micromachined ultrasonic transducer (PMUT) actuated by a strong external electric field. The transducer membrane consists of a piezoelectric laye... This paper studies the static deformation behavior of a piezoelectric micromachined ultrasonic transducer (PMUT) actuated by a strong external electric field. The transducer membrane consists of a piezoelectric layer, a passive layer and two electrode layers. The nonlinearities of the piezoelectric layer caused by electrostriction under a strong electric field are analyzed. Because the thickness of the transducer membrane is on the microscale, the size dependence of the deformation behavior is evaluated using the couple stress theory. The results show that the optimal ratio of the top electrode diameter and the membrane diameter is around 0.674. It is also found that this optimal value does not depend on any other parameters if the thicknesses of the two electrodes are negligible compared with those of the piezo- electric and passive layers. In addition, the nonlinearities of the piezoelectric layer will become stronger along with the increase of the electric field, which means that softening of the membrane stiffness occurs when a strong external electric field is applied. Meanwhile, the optimal thickness ratio for the passive layer and the piezoelectric layer is not equal to 1.0 which is usually adopted by previous researchers. Because there exists size dependence of membrane deforma-tion, the optimal value of this thickness ratio needs to be greater than 1.0 on the microscale. 展开更多
关键词 Piezoelectric micromachined ultrasonic trans- ducer (PMUT) Couple stress theory Static deformation - Nonlinearity analysis
下载PDF
Sensitivity analysis of pull-in voltage for RF MEMS switch based on modified couple stress theory 被引量:1
7
作者 Junhua ZHU Renhuai LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第12期1555-1568,共14页
An approximate analytical model for calculating the pull-in voltage of a stepped cantilever-type radio frequency (RF) micro electro-mechanical system (MEMS) switch is developed based on the Euler-Bernoulli beam an... An approximate analytical model for calculating the pull-in voltage of a stepped cantilever-type radio frequency (RF) micro electro-mechanical system (MEMS) switch is developed based on the Euler-Bernoulli beam and a modified couple stress theory, and is validated by comparison with the finite element results. The sensitivity functions of the pull-in voltage to the designed parameters are derived based on the proposed model. The sensitivity investigation shows that the pull-in voltage sensitivities increase/decrease nonlinearly with the increases in the designed parameters. For the stepped cantilever beam, there exists a nonzero optimal dimensionless length ratio, where the pull-in voltage is insensitive. The optimal value of the dimensionless length ratio only depends on the dimensionless width ratio, and can be obtained by solving a nonlinear equation. The determination of the designed parameters is discussed, and some recommendations are made for the RF MEMS switch optimization. 展开更多
关键词 stepped cantilever beam pull-in voltage modified couple stress theory radio frequency (RF) micro electro-mechanical system (MEMS) switch analytical solution sensitivity analysis
下载PDF
Bending and Buckling of Circular Sinusoidal Shear Deformation Microplates with Modified Couple Stress Theory
8
作者 QING Hai WEI Lu 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第1期79-86,共8页
The modified couple stress theory(MCST)is applied to analyze axisymmetric bending and buckling behaviors of circular microplates with sinusoidal shear deformation theory.The differential governing equations and bounda... The modified couple stress theory(MCST)is applied to analyze axisymmetric bending and buckling behaviors of circular microplates with sinusoidal shear deformation theory.The differential governing equations and boundary conditions are derived through the principle of minimum total potential energy,and expressed in nominal form with the introduced nominal variables.With the application of generalized differential quadrature method(GDQM),both the differential governing equations and boundary conditions are expressed in discrete form,and a set of linear equations are obtained.The bending deflection can be obtained through solving the linear equations,while buckling loads can be determined through solving general eigenvalue problems.The influence of material length scale parameter and plate geometrical dimensions on the bending deflection and buckling loads of circular microplates is investigated numerically for different boundary conditions. 展开更多
关键词 circular microplates size-effect modified couple stress theory(MCST) general differential quadrature method(GDQM)
下载PDF
Size-dependent thermoelastic initially stressed micro-beam due to a varying temperature in the light of the modified couple stress theory 被引量:2
9
作者 A.E.ABOUELREGAL 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第12期1805-1820,共16页
The bending of the Euler-Bernoulli micro-beam has been extensively modeled based on the modified couple stress(MCS)theory.Although many models have been incorporated into the literature,there is still room for introdu... The bending of the Euler-Bernoulli micro-beam has been extensively modeled based on the modified couple stress(MCS)theory.Although many models have been incorporated into the literature,there is still room for introducing an improved model in this context.In this work,we investigate the thermoelastic vibration of a micro-beam exposed to a varying temperature due to the application of the initial stress employing the MCS theory and generalized thermoelasticity.The MCS theory is used to investigate the material length scale effects.Using the Laplace transform,the temperature,deflection,displacement,flexure moment,and stress field variables of the micro-beam are derived.The effects of the temperature pulse and couple stress on the field distributions of the micro-beam are obtained numerically and graphically introduced.The numerical results indicate that the temperature pulse and couple stress have a significant effect on all field variables. 展开更多
关键词 THERMOELECTRICITY MICRO-BEAM initial stress temperature pulse modified couple stress(MCS)theory
下载PDF
Vibration Behavior of a Sandwich Porous Elliptical Micro-Shell with a Magneto-Rheological Core Based on the Modified Couple Stress Theory
10
作者 A.Mohammadpour S.Jafari Mehrabadi +1 位作者 P.Yousefi H.Mohseni Monfared 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第6期1655-1698,共44页
Recently,the use of porous materials has grown widely in many structures,such as beams,plates,and shells.The characteristics of porous materials change in the thickness direction by different functions.This study has ... Recently,the use of porous materials has grown widely in many structures,such as beams,plates,and shells.The characteristics of porous materials change in the thickness direction by different functions.This study has investigated the free vibration analysis of a sandwich porous elliptical micro-shell with a magneto-rheological fluid(MRF)core for the first time.Initially,we examined the displacement of the middle layer’s macro-and micro-components,using Love’s shell theory.Next,we used the modified couple stress theory(MCST)to obtain the strain and symmetrical curvature tensors for the three layers.The Hamilton’s principle was implemented to derive the equations of motion.We also used the Galerkin’s method to solve the equations of motion,resulting in a system of equations in the form of a linear eigenvalue problem.By solving the governing equations,we obtained the various natural frequencies and loss factors of the elliptical micro-shell,and compared them with the results in earlier studies.Lastly,we investigated the effects of thickness,porosity distribution pattern,aspect ratio,length scale parameter,and magnetic field intensity on the natural frequency and loss factor of the micro-shell.The data accuracy was validated by comparing them with those of reputable previous articles. 展开更多
关键词 Elliptical micro shell free vibration magneto-rheological core modified couple stress theory sandwich porous material
原文传递
VIBRATION ANALYSIS OF MICROSCALE PLATES BASED ON MODIFIED COUPLE STRESS THEORY 被引量:9
11
作者 Li Yin 《Acta Mechanica Solida Sinica》 SCIE EI 2010年第5期386-393,共8页
A non-classical Kirchhoff plate model is developed for the dynamic analysis of microscale plates based on the modified couple stress theory in which an internal material length scale parameter is included. Unlike the ... A non-classical Kirchhoff plate model is developed for the dynamic analysis of microscale plates based on the modified couple stress theory in which an internal material length scale parameter is included. Unlike the classical Kirchhoff plate model, the newly developed model can capture the size effect of microscale plates. Two boundary value problems of rectangular micro- plates are solved and the size effect on the lowest two natural frequencies is investigated. It is shown that the natural frequencies of the microscale plates predicted by the current model are size-dependent when the plate thickness is comparable to the material length scale parameter. 展开更多
关键词 microscale plate VIBRATION natural frequency modified couple stress theory size effect
原文传递
STABILITY ANALYSIS OF A CAPACITIVE FGM MICRO-BEAM USING MODIFIED COUPLE STRESS THEORY 被引量:4
12
作者 Behrokh Abbasnejad Ghader Rezazadeh Rasool Shabani 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2013年第4期427-440,共14页
Based on the Modified Couple Stress Theory,a functionally graded micro-beam under electrostatic forces is studied.The FGM micro-beam is made of two materials and material properties vary continuously along the beam th... Based on the Modified Couple Stress Theory,a functionally graded micro-beam under electrostatic forces is studied.The FGM micro-beam is made of two materials and material properties vary continuously along the beam thickness according to a power-law.Dynamic and static pull-in voltages are obtained and it is shown that the static and dynamic pull-in voltages for some materials cannot be obtained using classic theories and components of couple stress must be taken into account.In addition,it is shown that the values of pull-in voltages depend on the variation through the thickness of the volume fractions of the two constituents. 展开更多
关键词 MEMS FGM micro-beam stability pull-in voltage electrostatic pressure modified couple stress theory
原文传递
A continuum thermal stress theory for crystals based on interatomic potentials 被引量:3
13
作者 LIU XiaoLei TANG QiHeng WANG TzuChiang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第2期208-217,共10页
This paper presents a new continuum thermal stress theory for crystals based on interatomic potentials.The effect of finite temperature is taken into account via a harmonic model.An EAM potential for copper is adopted... This paper presents a new continuum thermal stress theory for crystals based on interatomic potentials.The effect of finite temperature is taken into account via a harmonic model.An EAM potential for copper is adopted in this paper and verified by computing the effect of the temperature on the specific heat,coefficient of thermal expansion and lattice constant.Then we calculate the elastic constants of copper at finite temperature.The calculation results are in good agreement with experimental data.The thermal stress theory is applied to an anisotropic crystal graphite,in which the Brenner potential is employed.Temperature dependence of the thermodynamic properties,lattice constants and thermal strains for graphite is calculated.The calculation results are also in good agreement with experimental data. 展开更多
关键词 thermal stress theory interatomic potential thermal strain finite temperature
原文传递
A size-dependent composite laminated skew plate model based on a new modified couple stress theory 被引量:2
14
作者 Dan He Wanli Yang Wanji Chen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第1期75-86,共12页
In this study, a size-dependent composite laminated skew Mindlin plate model is proposed based on a new modified couple stress theory. This plate model can be viewed as a simplified couple stress theory in engineering... In this study, a size-dependent composite laminated skew Mindlin plate model is proposed based on a new modified couple stress theory. This plate model can be viewed as a simplified couple stress theory in engineering mechanics. Governing equations and related boundary conditions are derived based on the principle of minimum potential energy. The Rayleigh–Ritz method is employed to obtain the numerical solutions of the center deflections of simply supported plates with different ply orientations. Numerical results show that the normalized center deflections obtained by the proposed model are always smaller than those obtained by the classical one, i.e. the present model can capture the scale effects of microstructures. Moreover, a phenomenon reveals that the ply orientation would make a significant influence on the magnitude of scale effects of composite laminated plates at micro scale. Additionally, the present model of thick skew plate can be degenerated to the model of Kirchhoff plate based on the modified couple stress theory by adopting the assumptions in Bernoulli–Euler beam and material isotropy. 展开更多
关键词 Modified couple stress theory Composite laminated plates Scale effects Ply orientation Rayleigh-Ritz method
原文传递
Application of Modified Couple Stress Theory and Homotopy Perturbation Method in Investigation of Electromechanical Behaviors of Carbon Nanotubes
15
作者 Mir Masoud Seyyed Fakhrabadi 《Advances in Applied Mathematics and Mechanics》 SCIE 2017年第1期23-42,共20页
The paper presents the size-dependant behaviors of the carbon nanotubes under electrostatic actuation using the modified couple stress theory and homotopy perturbation method.Due to the less accuracy of the classical ... The paper presents the size-dependant behaviors of the carbon nanotubes under electrostatic actuation using the modified couple stress theory and homotopy perturbation method.Due to the less accuracy of the classical elasticity theorems,the modified couple stress theory is applied in order to capture the size-dependant properties of the carbon nanotubes.Both of the static and dynamic behaviors under static DC and step DC voltages are discussed.The effects of various dimensions and boundary conditions on the deflection and pull-in voltages of the carbon nanotubes are to be investigated in detail via application of the homotopy perturbation method to solve the nonlinear governing equations semi-analytically. 展开更多
关键词 Carbon nanotubes modified couple stress theory homotopy perturbation method electrostatic actuation
原文传递
Assumed stress quasi-conforming triangular element for couple stress theory
16
作者 Changsheng Wang Xiangkui Zhang Ping Hu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第4期335-344,共10页
In this paper, a 3-node triangular element for couple stress theory is proposed based on the assumed stress quasi-conforming method. The formulation starts from polynomial approx- imation of stresses. Then the stress-... In this paper, a 3-node triangular element for couple stress theory is proposed based on the assumed stress quasi-conforming method. The formulation starts from polynomial approx- imation of stresses. Then the stress-function matrix is treated as the weighted function to weaken the strain-displacement equations. Finally, the string-net functions are introduced to calculate strain integration and the stress smooth technique is adopted to improve the stress accuracy. Numerical results show that the proposed new model can pass the Co- 1 patch test with excellent precision, does not exhibit extra zero energy modes and can cap- ture the scale effects of microstructure. 展开更多
关键词 Quasi-conforming Couple stress theory Fundamental analytical solutions
原文传递
AHermitian C^(2) Differential Reproducing Kernel Interpolation Meshless Method for the 3D Microstructure-Dependent Static Flexural Analysis of Simply Supported and Functionally Graded Microplates
17
作者 Chih-Ping Wu Ruei-Syuan Chang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期917-949,共33页
This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend... This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant. 展开更多
关键词 Consistent/modified couple stress theory differential reproducing kernel methods microplates point collocation methods static flexural 3D microstructure-dependent analysis
下载PDF
Size-dependent thermomechanical vibration characteristics of rotating pre-twisted functionally graded shear deformable microbeams
18
作者 Songye JIN Bo ZHANG +4 位作者 Wuyuan ZHANG Yuxing WANG Huoming SHEN Jing WANG Juan LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期1015-1032,共18页
A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress the... A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress theory(MCST).The material properties are assumed to follow a power-law distribution along the chordwise direction.The model introduces one axial stretching variable and four transverse deflection variables including two pure bending components and two pure shear ones.The complex modal analysis and assumed mode methods are used to solve the governing equations of motion under different boundary conditions(BCs).Several examples are presented to verify the effectiveness of the developed model.By coupling the slenderness ratio,gradient index,rotation speed,and size effect with the pre-twisted angle,the effects of these factors on the thermomechanical vibration of the microbeam with different BCs are investigated.It is found that with the increase in the pre-twisted angle,the critical slenderness ratio and gradient index corresponding to the thermal instability of the microbeam increase,while the critical material length scale parameter(MLSP)and rotation speed decrease.The sensitivity of the fundamental frequency to temperature increases with the increasing slenderness ratio and gradient index,and decreases with the other increasing parameters.Moreover,the size effect can suppress the dynamic stiffening effect and enhance the Coriolis effect.Finally,the mode transition is quantitatively demonstrated by a modal assurance criterion(MAC). 展开更多
关键词 thermomechanical vibration rotating pre-twisted functionally graded(FG)microbeam refined shear deformation theory(RSDT) modified couple stress theory(MCST) modal assurance criterion(MAC)
下载PDF
Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic micro-plate based on surface stress and modified couple stress theories using differential quadrature method 被引量:2
19
作者 M.MOHAMMADIMEHR M.A.MOHAMMADIMEHR P.DASHTI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第4期529-554,共26页
The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elas... The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications. 展开更多
关键词 biaxial and shear nonlinear buckling analysis nonlocal isotropic and orthotropic micro-plate modified couple stress theory (MCST) surface stress effect differential quadrature method (DQM)
下载PDF
Elastoplastic analysis of solid structures using penalty-based couple stress finite element method within framework of Cosserat continuum 被引量:1
20
作者 WANG Dong-yong CHEN Xi +2 位作者 JIANG Sheng-bin QI Ji-lin PENG Li-yun 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1320-1331,共12页
To obviate the complexities of the straight forward couple stress finite element method,the penalty-based couple stress finite element method(named PcouFEM)within the framework of the Cosserat continuum is utilized to... To obviate the complexities of the straight forward couple stress finite element method,the penalty-based couple stress finite element method(named PcouFEM)within the framework of the Cosserat continuum is utilized to obtain the approximate solution by relaxing the C1 continuity.To examine the performance of the PcouFEM,three well known numerical examples are investigated.For the analysis on stress concentration around the circular hole of the plane strain specimen,it was found that as long as the penalty factor G_(c) is not less than 5 times the shear modulus of the classical continuum G(i.e.,G_(c)≥5G),the stress concentration factors calculated by the PcouFEM with the reduced integration scheme agree well with the analytical solutions.For the strain localization analysis in the uniaxial compression test,it was observed that by applying the PcouFEM,the pathologically mesh-dependent problem associated with the conventional FEM can be alleviated or even removed,and based on numerical simulations,it is recommended to define 5G≤G_(c)≤10G from the perspective of numerical accuracy.For the soil slope subjected to an eccentric load through the rigid strip footing,it was found that the mesh-dependent problem of the shear band simulation can be largely alleviated by applying the PcouFEM. 展开更多
关键词 couple stress theory Cosserat theory penalty factor stress concentration strain localization
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部