Several cardiac outcomes have been reported with West Nile-encephalitis;however, the underlying pathophysiology remains complex. We present a 42-year-old female, with multiple sclerosis, whose neurological symptoms an...Several cardiac outcomes have been reported with West Nile-encephalitis;however, the underlying pathophysiology remains complex. We present a 42-year-old female, with multiple sclerosis, whose neurological symptoms and respiratory decline were finally explained by the diagnosis of West Nile-encephalitis. During her admission, the isolated peaked T-waves indicated the underlying stress-induced cardiomyopathy. The absence of all other causes of hyperacute T-waves, their subsequent resolution with the resolution of infection and improvement in wall motion abnormalities, further supported the association. This case highlights the importance of considering hyperacute T-waves in an approach towards the diagnosis of WNV-encephalitis related atypical variant of stress-induced cardiomyopathy.展开更多
The mechanical behavior of shape memory alloys (SMAs) is closely related to the formation and evolution of its microstructures. Through theoretical analysis and experimental observations, it was found that the stres...The mechanical behavior of shape memory alloys (SMAs) is closely related to the formation and evolution of its microstructures. Through theoretical analysis and experimental observations, it was found that the stress-induced martensitic transformation process of single crystal Cu-based SMA under uniaxial tension condition consisted of three periods: nucleation, mixed nucleation and growth, and merging due to growth. During the nucleation, the stress dropped rapidly and the number of interfaces increased very fast while the phase fraction increased slowly. In the second period, both the stress and the interface number changed slightly but the phase fraction increased dramatically. Finally, the stress and the phase fraction changed slowly while the number of interfaces decreased quickly. Moreover, it was found that the transformation could be of multi-stage: sharp stress drops at several strains and correspondingly, the nucleation and growth process occurred quasi-independently in several parts of the sample.展开更多
BACKGROUND Stress-induced gastric ulcer(SGU) is one of the most common visceral complications after trauma. Restraint water-immersion stress(RWIS) can cause serious gastrointestinal dysfunction and has been widely use...BACKGROUND Stress-induced gastric ulcer(SGU) is one of the most common visceral complications after trauma. Restraint water-immersion stress(RWIS) can cause serious gastrointestinal dysfunction and has been widely used to study the pathogenesis of SGU to identify medications that can cure the disease. The mediodorsal thalamic nucleus(MD) is the centre integrating visceral and physical activity and contributes to SGU induced by RWIS. Hence, the role of the MD during RWIS needs to be studied.AIM To screen for differentially expressed proteins in the MD of the RWIS rats to further elucidate molecular mechanisms of SGU.METHODS Male Wistar rats were selected randomly and divided into two groups, namely, a control group and an RWIS group. Gastric mucosal lesions of the sacrificed rats were measured using the erosion index and the proteomic profiles of the MD were generated through isobaric tags for relative and absolute quantitation(iTRAQ) coupled with two-dimensional liquid chromatography and tandem mass spectrometry. Additionally, iTRAQ results were verified by Western blot analysis.RESULTS A total of 2853 proteins were identified, and these included 65 dysregulated(31 upregulated and 34 downregulated) proteins(fold change ratio ≥ 1.2). Gene Ontology(GO) analysis showed that most of the upregulated proteins are primarily related to cell division, whereas most of the downregulated proteins are related to neuron morphogenesis and neurotransmitter regulation. Ingenuity Pathway Analysis revealed that the dysregulated proteins are mainly involved in the neurological disease signalling pathways. Furthermore, our results indicated that glycogen synthase kinase-3 beta might be related to the central mechanismthrough which RWIS gives rise to SGU.CONCLUSION Quantitative proteomic analysis elucidated the molecular targets associated with the production of SGU and provides insights into the role of the MD. The underlying molecular mechanisms need to be further dissected.展开更多
Stress-induced gastric mucosal lesion(SGML)is one of the most common visceral complications after trauma.Exploring the nervous mechanisms of SGML has become a research hotspot.Restraint water-immersion stress(RWIS)can...Stress-induced gastric mucosal lesion(SGML)is one of the most common visceral complications after trauma.Exploring the nervous mechanisms of SGML has become a research hotspot.Restraint water-immersion stress(RWIS)can induce GML and has been widely used to elucidate the nervous mechanisms of SGML.It is believed that RWIS-induced GML is mainly caused by the enhanced activity of vagal parasympathetic nerves.Many central nuclei,such as the dorsal motor nucleus of the vagus,nucleus of the solitary tract,supraoptic nucleus and paraventricular nucleus of the hypothalamus,mediodorsal nucleus of the thalamus,central nucleus of the amygdala and medial prefrontal cortex,are involved in the formation of SGML in varying degrees.Neurotransmitters/neuromodulators,such as nitric oxide,hydrogen sulfide,vasoactive intestinal peptide,calcitonin gene-related peptide,substance P,enkephalin,5-hydroxytryptamine,acetylcholine,catecholamine,glutamate,γ-aminobutyric acid,oxytocin and arginine vasopressin,can participate in the regulation of stress.However,inconsistent and even contradictory results have been obtained regarding the actual roles of each nucleus in the nervous mechanism of RWIS-induced GML,such as the involvement of different nuclei with the time of RWIS,the different levels of involvement of the sub-regions of the same nucleus,and the diverse signalling molecules,remain to be further elucidated.展开更多
To understand the evolution of stress-induced elastic wave anisotropy,three triaxial experiments were performed on sandstone specimens with bedding orientations parallel,perpendicular,and oblique to the maximum princi...To understand the evolution of stress-induced elastic wave anisotropy,three triaxial experiments were performed on sandstone specimens with bedding orientations parallel,perpendicular,and oblique to the maximum principal stress.P-wave velocities along 64 different directions on each specimen were monitored frequently to understand the anisotropy change at various stress levels by fitting Thomsen’s anisotropy equation.The results show that the elastic wave anisotropy is very sensitive to mechanical loading.Under hydrostatic loading,the magnitude of anisotropy is reduced in all three specimens.However,under deviatoric stress loading,the evolution of anisotropic characteristics(magnitude and orientation of the symmetry axis)is bedding orientation dependent.Anisotropy reversal occurs in specimens with bedding normal/oblique to the maximum principal stress.P-wave anisotropyε0 is linearly related to volumetric strain Sv and dilatancy,indicating that stress-induced redistribution of microcracks has a significant effect on P-wave velocity anisotropy.The closure of initial cracks and pores aligned in the bedding direction contributes to the decrease of the anisotropy.However,opening of new cracks,aligned in the maximum principal direction,accounts for the increase of the anisotropy.The experimental results provide some insights into the microstructural behavior under loading and provide an experimental basis for seismic data interpretation and parameter selection in engineering applications.展开更多
The effect of pan-milling on morphological structure,processability and properties of PVC was studied throughSEM,FTIR,granulometer,GPC and mechanical properties test in the hope of gaining ease in operation,needless o...The effect of pan-milling on morphological structure,processability and properties of PVC was studied throughSEM,FTIR,granulometer,GPC and mechanical properties test in the hope of gaining ease in operation,needless ofplasticizers,a clean and efficient route for improving the processability of PVC through stress-induced reactions,fulfilling the idea of“plasticizing PVC by itself”.The experimental results show that during pan-milling at ambienttemperature,within 2-3 min,the microcrystalline structure of PVC becomes indistinct,the grain size of PVC is reducedfrom 130-160 μm to 1-50 μm the molecular weight of PVC is slightly decreased,the variation of molecular weightdistribution is indistinct,the plasticizing time and torque at balance drop a great deal from 71-132 s to 31-33 s and from18.2-22.1 Nm to 14.7-18.4 Nm,respectively,the processability of PVC is markedly improved,and the mechanicalproperties get enhanced too.展开更多
The microstructures of a single crystal Ni-base superalloy with [001] orientation were observed by means of TEM. Results showed that the fine γ' particles were precipitated in the γ matrix channels during the t...The microstructures of a single crystal Ni-base superalloy with [001] orientation were observed by means of TEM. Results showed that the fine γ' particles were precipitated in the γ matrix channels during the tensile deformation of the alloy. Thermodynamics analysis indicated that the solubility of elements M(Al,Ta) within the γ matrix may be changed when the alloy was deformed by the external applied stress. The tensile stress reduced the solubility of elements Al and Ta so as to occur the over-saturation and agglomeration of them, which promoted the precipitation of fine γ'-phase in the γ matrix.展开更多
In this study, DERB1A transcription factor and stress-induced promoter rd29A were isolated respectively and amplified from Arabidopsis thaliana, se- quenced and analyzed by DNAsis. In addition, the stress-induced prom...In this study, DERB1A transcription factor and stress-induced promoter rd29A were isolated respectively and amplified from Arabidopsis thaliana, se- quenced and analyzed by DNAsis. In addition, the stress-induced promoter rd29A was utilized to construct the plant expression vector of DERB1A, which was transformed into Agrobacterium tumefaciens. Furthermore, the transgenic regeneration system of fresh-cut chrysanthemum from callus to plantlets was established successfully. On this basis, chrysanthemum leaf-disc explants were genetically transformed with Agrobacterium-mediated method. Two positive transgenie plantlets were obtained in vitro. Based on PCR detection, DREB1A transcription factor was integrated into chrysanthemum genome, which laid the foundation for breeding new transgenie cultivars of fresh-cut chrysanthemum with high comprehensive stress resistance, good cmalitv and high field.展开更多
The relation between stacking fault overlap and martensitic nucleation in Fe-17Mn-10Cr-5Si-4Ni alloy was studied.The arrayed structure of dislocations and characteristics ofε-martensite formation under stress were in...The relation between stacking fault overlap and martensitic nucleation in Fe-17Mn-10Cr-5Si-4Ni alloy was studied.The arrayed structure of dislocations and characteristics ofε-martensite formation under stress were in-situ observed by TEM.The results reveal thatε-martensite nucleates at the top of stacking faults overlapped band,where the ordered arrayed structure of Shockley partial dislocations exists.External stress promotesε-martensitic nucleation ability because of accelerated ordering of Shockley partial dislocations in stacking faults overlapped band.展开更多
OBJECTIVE To fabricate Silymarin(SM) nanosuspensions(NSs) and evaluate their protective effect on stress-induced liver injury. METHODS SM nanosuspensions were tailored by combination of the anti-solvent precipitation ...OBJECTIVE To fabricate Silymarin(SM) nanosuspensions(NSs) and evaluate their protective effect on stress-induced liver injury. METHODS SM nanosuspensions were tailored by combination of the anti-solvent precipitation and high pressure homogenization(HPH); the formulations were optimized by central composite design. The pharmacokinetics and pharmacodynamics of SM-NSs were also performed.RESULTS In light of the quadratic mathematical equations derived from the Design of Expert Software,the optimal formulation of SM-NSs consisted of PVP 0.34% and F188 0.36%. The morphology of NSs was found to be spherical with a diameter of about 150 nm using transmission electron microscope(TEM)observation. The pharmacokinetics experiment demonstrated that oral administration of SM-NSs significantly increased its bioavailability compared to the coarse powder(Cmax: 9.03 ± 2.39 mg · L^(-1);AUMC_(0→∞):3757.35±227.19 mg·L^(-1)·h; AUC_(0→∞):171.84±26.61 mg·L^(-1)·h). In pharmacodynamics,it was found that restraint stress produced oxidative effects and increased serum AST and ALT levels in mice,both of which were significantly inhibited by SM and SM-NSs; in addition,administration of SM-NSs showed more effective prevention against acute liver injury than SM coarse suspensions(r^2=0.986,0.984,P<0.05). CONCLUSION The results suggest that fabricated SM-NSs exert potent hepatoprotective effects and attenuate restraint stress-induced liver injury. The study provides an effective approach to improving the property of SM,which can be used for treatment of liver diseases.展开更多
In the process of high-k films fabrication, a novel multi deposition multi annealing (MDMA) technique is introduced to replace simple post deposition annealing. The leakage current decreases with the increase of the...In the process of high-k films fabrication, a novel multi deposition multi annealing (MDMA) technique is introduced to replace simple post deposition annealing. The leakage current decreases with the increase of the post deposition annealing (PDA) times. The equivalent oxide thickness (EOT) decreases when the annealing time(s) change from 1 to 2. Furthermore, the characteristics of SILC (stress-induced leakage current) for an ultra-thin SiO2/HfO2 gate dielectric stack are studied systematically. The increase of the PDA time(s) from 1 to 2 can decrease the defect and defect generation rate in the HK layer. However, increasing the PDA times to 4 and 7 may introduce too much oxygen, therefore the type of oxygen vacancy changes.展开更多
A simple testing method for secondary or induced stress of surrounding rockwas presented by laboratory experiment, numerical simulation and in situ testing based onthe basic principle of the historical stress restorin...A simple testing method for secondary or induced stress of surrounding rockwas presented by laboratory experiment, numerical simulation and in situ testing based onthe basic principle of the historical stress restoring method.First, stress equivalent coefficient,which key coefficient of stress restored testing, was obtained by laboratory experiment.Second, experimental results were examined using 3D finite element numericalanalysis and the influence factors were analyzed by 2D finite element numerical analysis.The correctness of induced stress measuring results in situ for highway tunnel wereproved by elastic mechanics theory solution and single-hole stress rescission method.Thenew simple method of induced stress measuring has important practical value for undergroundengineering induced stress field analysis.展开更多
Ferulic acid (FA) is a ubiquitous phenolic acid of low toxicity, and sodium ferulate (SF) is its sodium salt. Our previous studies have revealed that FA shows neuroprotective effect and significant antidepressant- lik...Ferulic acid (FA) is a ubiquitous phenolic acid of low toxicity, and sodium ferulate (SF) is its sodium salt. Our previous studies have revealed that FA shows neuroprotective effect and significant antidepressant- like effect. The aim of this study was to investigate its potential neurogenesis-enhancing effect and its role in repair following stress-induced neuronal damage. MTT assay was performed to measure the effect of SF on the growth of rat pheochromocytoma (PC12) cells;morphological and immunocytochemical meth- ods were used for assessing its differentiation-induc- ing action. Chronic mild stress (CMS) tests were per- formed to establish rat model of depression. The histopathology of animal brains was studied to ana- lyze CMS-induced morphological changes and the effect of SF on the repair of CMS-induced brain in- jury. The expressions of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and the proliferation of neural stem cell/neural progenitor cells were assessed in the hippocampi of chronic mild stress (CMS)-induced depression-like model rats by immunohistochemistry and bromodeoxyuridine (BrdU)- incorporation assays, respectively. Our in vitro tests showed that SF promoted the proliferation of PC12 cells in the concentration range of 5 - 320 μM, and induced PC12 cells to differentiate to more mature cells with the morphological characteristics and mo- lecular marker of neuronal-like cells. In vivo tests showed that SF up-regulated the expressions of NGF and BDNF, and induced the proliferation of neural stem cell/neural progenitor cells in the hippocampi of CMS-induced depression-like model rats. This study provides evidences that SF shows neurogenesis-en- hancing effect, and its antidepressant-like effect of SF may be related directly and closely to its above-men- tioned effect.展开更多
Lattice-strained Si thin films grown onto SiGe(110)/Si(110) are attracting because of their potential to realize high-speed transistors. In this study we observe surface morphology of Si/SiGe/Si(110) using scanning el...Lattice-strained Si thin films grown onto SiGe(110)/Si(110) are attracting because of their potential to realize high-speed transistors. In this study we observe surface morphology of Si/SiGe/Si(110) using scanning electron microscopy and we also observe microstructure of the identical position using cross-sectional transmission electron microscopy. These results reveal that crossing of stress-induced twins causes remarkable surface roughness. We propose using vicinal substrate to avoid this phenomenon and our successive experimental results are shown in this paper.展开更多
Stress-induced cardiomyopathy,in contrast to acute myocardial infarction,is a type of acute heart failure characterized by reversible left ventricular dysfunction.Cardiac imaging primarily reveals left ventricle myoca...Stress-induced cardiomyopathy,in contrast to acute myocardial infarction,is a type of acute heart failure characterized by reversible left ventricular dysfunction.Cardiac imaging primarily reveals left ventricle myocardial stunning,81.7%of which is apical type.Emotional or psychological stress usually precedes the onset of stress-induced cardiomyopathy,which is increasingly being recognized as a unique neurogenic myocardial stunning disease.To distinguish between acute myocardial infarction and acute viral or auto-immune myocarditis,this review summarizes specific mechanisms of myocardial stunning in stress-induced cardiomyopathy,such as calcium disorders,metabolic alterations,anatomical and histological variations in different parts of the left ventricle,and microvascular dysfunction.展开更多
Drought is a major environmental factor limiting cotton (Gossypium hirsutum L.) productivity worldwide and projected climate changes could increase their negative effects in the future. Thus, targeting the molecular m...Drought is a major environmental factor limiting cotton (Gossypium hirsutum L.) productivity worldwide and projected climate changes could increase their negative effects in the future. Thus, targeting the molecular mechanisms correlated with drought tolerance without reducing productivity is a challenge for plant breeding. In this way, we evaluated the effects of water deficit progress on AtDREB2A-CA transgenic cotton plant responses, driven by the stress-inducible rd29 promoter. Besides shoot and root morphometric traits, gas exchange and osmotic adjustment analyses were also included. Here, we present how altered root traits shown by transgenic plants impacted on physiological acclimation responses when submitted to severe water stress. The integration of AtDREB2A-CA into the cotton genome increased total root volume, surface area and total root length, without negatively affecting shoot morphometric growth parameters and nor phenotypic evaluated traits. Additionally, when compared to wild-type plants, transgenic plants (17-T0 plants and its progeny) highlighted a gradual pattern of phenotypic plasticity tosome photosynthetic parameters such as photosynthetic rate and stomatal conductance with water deficit progress. Transgene also promoted greater shoot development and root robustness (greater and deeper root mass) allowing roots to grow into deeper soil layers. The same morpho-physiological trend was observed in the subsequent generation (17.6-T2). Our results suggest that the altered root traits shown by transgenic plants are the major contributors to higher tolerance response, allowing the AtDRE2A-CA-cotton plants to maintain elevated stomatal conductance and assimilate rates and, consequently, reducing their metabolic costs involved in the antioxidant responses activation. These results also suggest that these morpho-physiological changes increased the number of reproductive structures retained per plant (26% higher) when compared with its non-transgenic counterpart. This is the first report of cotton plants overexpressing the AtDRE2A-CA transcription factor, demonstrating a morpho-physiological and yield advantages under drought stress, without displaying any yield penalty under irrigated conditions. The mechanisms by which the root traits influenced the acclimation of the transgenic plants to severe water deficit conditions are also discussed. These data present an opportunity to use this strategy in cotton breeding programs in order to improve drought adaptation toward better rooting features.展开更多
The Ti-36Nb-2Ta-3Zr-0.350 (mass fraction, %) (TNTZO) alloy was produced by cold isostatic pressing and sintering from elemental powders, followed by hot and cold deformation. The effects of deformation process on ...The Ti-36Nb-2Ta-3Zr-0.350 (mass fraction, %) (TNTZO) alloy was produced by cold isostatic pressing and sintering from elemental powders, followed by hot and cold deformation. The effects of deformation process on microstructures and mechanical properties were investigated using the SEM, TEM, OM and the universal material testing machine. Results show that the alloy can be easily hot forged and cold swaged due to the fine-grained microstructure. Only after cold swaging by 85%, the alloy shows the typical "marble-like" structure. And thecold deformation is accompanied by stress-induced a" phase transformations. Moreover, both the strength and the ductility of the alloy are significantly improved by hot and cold working.展开更多
To address the role of the HCP martensite in CoAl and CoNi shape memory alloys, the relationship between the shape memory effect (SME) and the content of the thermal and stress-induced HCP martensite was invest...To address the role of the HCP martensite in CoAl and CoNi shape memory alloys, the relationship between the shape memory effect (SME) and the content of the thermal and stress-induced HCP martensite was investigated in the solution-treated CoAl and CoNi alloys. In-situ optical observations were employed to investigate the contents of thermal HCP martensite before and after deep cooling and its influence on the stress-induced HCP martensite transformation and SME. The results show that the SME in both the CoAl and the CoNi alloys results from the stress-induced HCP martensite. The role of the thermal HCP martensite in both of them is the strengthening of the matrix. The much higher yield strength in the solution-treated CoAl alloy due to solution strengthening of Al is responsible for its better SME compared with the CoNi alloy.展开更多
Non-coding RNAs(ncRNAs) are a type of RNA that is not translated into proteins. Transfer RNAs(tRNAs), a type of ncRNA, are the second most abundant type of RNA in cells. Recent studies have shown that tRNAs can be cle...Non-coding RNAs(ncRNAs) are a type of RNA that is not translated into proteins. Transfer RNAs(tRNAs), a type of ncRNA, are the second most abundant type of RNA in cells. Recent studies have shown that tRNAs can be cleaved into a heterogeneous population of ncRNAs with lengths of 18–40 nucleotides, known as tRNA-derived small RNAs(tsRNAs). There are two main types of tsRNA, based on their length and the number of cleavage sites that they contain: tRNA-derived fragments and tRNA-derived stress-induced RNAs. These RNA species were first considered to be byproducts of tRNA random cleavage. However, mounting evidence has demonstrated their critical functional roles as regulatory factors in the pathophysiological processes of various diseases, including neurological diseases. However, the underlying mechanisms by which tsRNAs affect specific cellular processes are largely unknown. Therefore, this study comprehensively summarizes the following points:(1) The biogenetics of tsRNA, including their discovery, classification, formation, and the roles of key enzymes.(2) The main biological functions of tsRNA, including its miRNA-like roles in gene expression regulation, protein translation regulation, regulation of various cellular activities, immune mediation, and response to stress.(3) The potential mechanisms of pathophysiological changes in neurological diseases that are regulated by tsRNA, including neurodegeneration and neurotrauma.(4) The identification of the functional diversity of tsRNA may provide valuable information regarding the physiological and pathophysiological mechanisms of neurological disorders, thus providing a new reference for the clinical treatment of neurological diseases. Research into tsRNAs in neurological diseases also has the following challenges: potential function and mechanism studies, how to accurately quantify expression, and the exact relationship between tsRNA and miRNA. These challenges require future research efforts.展开更多
Understanding three-dimensional(3D)in situ stress field is of key importance for estimating the stability of large deep underground cavern groups near valleys.However,the complete 3D in situ stress fields around large...Understanding three-dimensional(3D)in situ stress field is of key importance for estimating the stability of large deep underground cavern groups near valleys.However,the complete 3D in situ stress fields around large deep underground cavern groups are difficult to determine based on in situ stress data from a limited number of measuring points due to the insufficient representativeness and unreliability of such measurements.In this study,an integrated approach for estimating the 3D in situ stress field around a large deep underground cavern group near a valley is developed based on incomplete in situ stress measurements and the stress-induced failures of tunnels excavated prior to the step excavation of the cavern group.This integrated approach is implemented via four interrelated and progressive basic steps,i.e.inference of the regional tectonic stress field direction,analyses of in situ stress characteristics and measurement reliability,regression-based in situ stress field analysis and reliability assessment,and modified in situ stress field analysis and reliability verification.The orientations and magnitudes of the 3D in situ stress field can be analyzed and obtained at a strategic level following these four basic steps.First,the tectonic stress field direction around the cavern group is deduced in accordance with the regional tectonic framework and verified using a regional crustal deformation velocity map.Second,the reliability of the in situ stress measurements is verified based on the locations and depths of stressinduced brittle failures in small tunnels(such as exploratory tunnels and pilot tunnels)within the excavation range of the cavern group.Third,considering the influences of the valley topography and major geological structures,the 3D in situ stress field is regressed using numerical simulation and multiple linear regression techniques based on the in situ stress measurements.Finally,the regressed in situ stress field is further modified and reverified based on the stress-induced brittle failures of small tunnels and the initial excavation of the cavern group.A case study of the Shuangjiangkou underground cavern group demonstrates that the proposed approach is reliable for estimating the 3D in situ stress fields of large deep underground cavern groups near valleys,thus contributing to the optimization of practical excavation and design of mitigating the instability of the surrounding rock masses during step excavations.展开更多
文摘Several cardiac outcomes have been reported with West Nile-encephalitis;however, the underlying pathophysiology remains complex. We present a 42-year-old female, with multiple sclerosis, whose neurological symptoms and respiratory decline were finally explained by the diagnosis of West Nile-encephalitis. During her admission, the isolated peaked T-waves indicated the underlying stress-induced cardiomyopathy. The absence of all other causes of hyperacute T-waves, their subsequent resolution with the resolution of infection and improvement in wall motion abnormalities, further supported the association. This case highlights the importance of considering hyperacute T-waves in an approach towards the diagnosis of WNV-encephalitis related atypical variant of stress-induced cardiomyopathy.
基金the National Natural Science Foundation of China(Nos.10372033 and 10672042)Pujiang Scholar Program and Natural Science Foundation of Shanghai(No.06ZR14009).
文摘The mechanical behavior of shape memory alloys (SMAs) is closely related to the formation and evolution of its microstructures. Through theoretical analysis and experimental observations, it was found that the stress-induced martensitic transformation process of single crystal Cu-based SMA under uniaxial tension condition consisted of three periods: nucleation, mixed nucleation and growth, and merging due to growth. During the nucleation, the stress dropped rapidly and the number of interfaces increased very fast while the phase fraction increased slowly. In the second period, both the stress and the interface number changed slightly but the phase fraction increased dramatically. Finally, the stress and the phase fraction changed slowly while the number of interfaces decreased quickly. Moreover, it was found that the transformation could be of multi-stage: sharp stress drops at several strains and correspondingly, the nucleation and growth process occurred quasi-independently in several parts of the sample.
基金Supported by National Natural Science Foundation of China,No.31501861Natural Science Foundation of Shandong Province,China,No.ZR2015CM013
文摘BACKGROUND Stress-induced gastric ulcer(SGU) is one of the most common visceral complications after trauma. Restraint water-immersion stress(RWIS) can cause serious gastrointestinal dysfunction and has been widely used to study the pathogenesis of SGU to identify medications that can cure the disease. The mediodorsal thalamic nucleus(MD) is the centre integrating visceral and physical activity and contributes to SGU induced by RWIS. Hence, the role of the MD during RWIS needs to be studied.AIM To screen for differentially expressed proteins in the MD of the RWIS rats to further elucidate molecular mechanisms of SGU.METHODS Male Wistar rats were selected randomly and divided into two groups, namely, a control group and an RWIS group. Gastric mucosal lesions of the sacrificed rats were measured using the erosion index and the proteomic profiles of the MD were generated through isobaric tags for relative and absolute quantitation(iTRAQ) coupled with two-dimensional liquid chromatography and tandem mass spectrometry. Additionally, iTRAQ results were verified by Western blot analysis.RESULTS A total of 2853 proteins were identified, and these included 65 dysregulated(31 upregulated and 34 downregulated) proteins(fold change ratio ≥ 1.2). Gene Ontology(GO) analysis showed that most of the upregulated proteins are primarily related to cell division, whereas most of the downregulated proteins are related to neuron morphogenesis and neurotransmitter regulation. Ingenuity Pathway Analysis revealed that the dysregulated proteins are mainly involved in the neurological disease signalling pathways. Furthermore, our results indicated that glycogen synthase kinase-3 beta might be related to the central mechanismthrough which RWIS gives rise to SGU.CONCLUSION Quantitative proteomic analysis elucidated the molecular targets associated with the production of SGU and provides insights into the role of the MD. The underlying molecular mechanisms need to be further dissected.
基金Supported by National Natural Science Foundation of China,No.31501861 and No.31672286Natural Science Foundation of Shandong Province,China,No.ZR2015CM013。
文摘Stress-induced gastric mucosal lesion(SGML)is one of the most common visceral complications after trauma.Exploring the nervous mechanisms of SGML has become a research hotspot.Restraint water-immersion stress(RWIS)can induce GML and has been widely used to elucidate the nervous mechanisms of SGML.It is believed that RWIS-induced GML is mainly caused by the enhanced activity of vagal parasympathetic nerves.Many central nuclei,such as the dorsal motor nucleus of the vagus,nucleus of the solitary tract,supraoptic nucleus and paraventricular nucleus of the hypothalamus,mediodorsal nucleus of the thalamus,central nucleus of the amygdala and medial prefrontal cortex,are involved in the formation of SGML in varying degrees.Neurotransmitters/neuromodulators,such as nitric oxide,hydrogen sulfide,vasoactive intestinal peptide,calcitonin gene-related peptide,substance P,enkephalin,5-hydroxytryptamine,acetylcholine,catecholamine,glutamate,γ-aminobutyric acid,oxytocin and arginine vasopressin,can participate in the regulation of stress.However,inconsistent and even contradictory results have been obtained regarding the actual roles of each nucleus in the nervous mechanism of RWIS-induced GML,such as the involvement of different nuclei with the time of RWIS,the different levels of involvement of the sub-regions of the same nucleus,and the diverse signalling molecules,remain to be further elucidated.
基金The research was partially supported by the National Natural Science Foundation of China(Grant Nos.41902297,41872210)the Natural Science Foundation of Hubei Province(Grant No.2018CFB292)Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z017006).
文摘To understand the evolution of stress-induced elastic wave anisotropy,three triaxial experiments were performed on sandstone specimens with bedding orientations parallel,perpendicular,and oblique to the maximum principal stress.P-wave velocities along 64 different directions on each specimen were monitored frequently to understand the anisotropy change at various stress levels by fitting Thomsen’s anisotropy equation.The results show that the elastic wave anisotropy is very sensitive to mechanical loading.Under hydrostatic loading,the magnitude of anisotropy is reduced in all three specimens.However,under deviatoric stress loading,the evolution of anisotropic characteristics(magnitude and orientation of the symmetry axis)is bedding orientation dependent.Anisotropy reversal occurs in specimens with bedding normal/oblique to the maximum principal stress.P-wave anisotropyε0 is linearly related to volumetric strain Sv and dilatancy,indicating that stress-induced redistribution of microcracks has a significant effect on P-wave velocity anisotropy.The closure of initial cracks and pores aligned in the bedding direction contributes to the decrease of the anisotropy.However,opening of new cracks,aligned in the maximum principal direction,accounts for the increase of the anisotropy.The experimental results provide some insights into the microstructural behavior under loading and provide an experimental basis for seismic data interpretation and parameter selection in engineering applications.
基金Subsidized by the Special Funds for Major State Basic Research Projects of China(Contract/grant number:199064809)
文摘The effect of pan-milling on morphological structure,processability and properties of PVC was studied throughSEM,FTIR,granulometer,GPC and mechanical properties test in the hope of gaining ease in operation,needless ofplasticizers,a clean and efficient route for improving the processability of PVC through stress-induced reactions,fulfilling the idea of“plasticizing PVC by itself”.The experimental results show that during pan-milling at ambienttemperature,within 2-3 min,the microcrystalline structure of PVC becomes indistinct,the grain size of PVC is reducedfrom 130-160 μm to 1-50 μm the molecular weight of PVC is slightly decreased,the variation of molecular weightdistribution is indistinct,the plasticizing time and torque at balance drop a great deal from 71-132 s to 31-33 s and from18.2-22.1 Nm to 14.7-18.4 Nm,respectively,the processability of PVC is markedly improved,and the mechanicalproperties get enhanced too.
文摘The microstructures of a single crystal Ni-base superalloy with [001] orientation were observed by means of TEM. Results showed that the fine γ' particles were precipitated in the γ matrix channels during the tensile deformation of the alloy. Thermodynamics analysis indicated that the solubility of elements M(Al,Ta) within the γ matrix may be changed when the alloy was deformed by the external applied stress. The tensile stress reduced the solubility of elements Al and Ta so as to occur the over-saturation and agglomeration of them, which promoted the precipitation of fine γ'-phase in the γ matrix.
基金Supported by Natural Science Foundation of Yunnan Province(2007C213M)Provincial Key Discipline of Landscape Plant&Ornamental Horticulture of Yunnan Province+1 种基金Provincial Key Lab of Colleges and Universities in Landscape Plants and Ornamental Horticulture of Yunnan ProvinceLarge Apparatuses Sharing Platform of Southwest Forestry University
文摘In this study, DERB1A transcription factor and stress-induced promoter rd29A were isolated respectively and amplified from Arabidopsis thaliana, se- quenced and analyzed by DNAsis. In addition, the stress-induced promoter rd29A was utilized to construct the plant expression vector of DERB1A, which was transformed into Agrobacterium tumefaciens. Furthermore, the transgenic regeneration system of fresh-cut chrysanthemum from callus to plantlets was established successfully. On this basis, chrysanthemum leaf-disc explants were genetically transformed with Agrobacterium-mediated method. Two positive transgenie plantlets were obtained in vitro. Based on PCR detection, DREB1A transcription factor was integrated into chrysanthemum genome, which laid the foundation for breeding new transgenie cultivars of fresh-cut chrysanthemum with high comprehensive stress resistance, good cmalitv and high field.
基金Item Sponsored by National Natural Science Foundation of China(59801005)
文摘The relation between stacking fault overlap and martensitic nucleation in Fe-17Mn-10Cr-5Si-4Ni alloy was studied.The arrayed structure of dislocations and characteristics ofε-martensite formation under stress were in-situ observed by TEM.The results reveal thatε-martensite nucleates at the top of stacking faults overlapped band,where the ordered arrayed structure of Shockley partial dislocations exists.External stress promotesε-martensitic nucleation ability because of accelerated ordering of Shockley partial dislocations in stacking faults overlapped band.
基金The project supported by Natural Science Foundation of Shandong Province(ZR2014HL103,ZR2016HM21,J13LM51)Taishan Medical University Foundation(2014GCC15)the Foundation of Overseas Distinguished Taishan Scholars of Shandong Province,China
文摘OBJECTIVE To fabricate Silymarin(SM) nanosuspensions(NSs) and evaluate their protective effect on stress-induced liver injury. METHODS SM nanosuspensions were tailored by combination of the anti-solvent precipitation and high pressure homogenization(HPH); the formulations were optimized by central composite design. The pharmacokinetics and pharmacodynamics of SM-NSs were also performed.RESULTS In light of the quadratic mathematical equations derived from the Design of Expert Software,the optimal formulation of SM-NSs consisted of PVP 0.34% and F188 0.36%. The morphology of NSs was found to be spherical with a diameter of about 150 nm using transmission electron microscope(TEM)observation. The pharmacokinetics experiment demonstrated that oral administration of SM-NSs significantly increased its bioavailability compared to the coarse powder(Cmax: 9.03 ± 2.39 mg · L^(-1);AUMC_(0→∞):3757.35±227.19 mg·L^(-1)·h; AUC_(0→∞):171.84±26.61 mg·L^(-1)·h). In pharmacodynamics,it was found that restraint stress produced oxidative effects and increased serum AST and ALT levels in mice,both of which were significantly inhibited by SM and SM-NSs; in addition,administration of SM-NSs showed more effective prevention against acute liver injury than SM coarse suspensions(r^2=0.986,0.984,P<0.05). CONCLUSION The results suggest that fabricated SM-NSs exert potent hepatoprotective effects and attenuate restraint stress-induced liver injury. The study provides an effective approach to improving the property of SM,which can be used for treatment of liver diseases.
基金supported by the National High Technology Research and Development Program of China(Grant No.2015AA016501)the National Natural Science Foundation of China(Grant No.61306129)
文摘In the process of high-k films fabrication, a novel multi deposition multi annealing (MDMA) technique is introduced to replace simple post deposition annealing. The leakage current decreases with the increase of the post deposition annealing (PDA) times. The equivalent oxide thickness (EOT) decreases when the annealing time(s) change from 1 to 2. Furthermore, the characteristics of SILC (stress-induced leakage current) for an ultra-thin SiO2/HfO2 gate dielectric stack are studied systematically. The increase of the PDA time(s) from 1 to 2 can decrease the defect and defect generation rate in the HK layer. However, increasing the PDA times to 4 and 7 may introduce too much oxygen, therefore the type of oxygen vacancy changes.
基金Supported by the National Natural Science Foundation Special Originality Innovation Research Colony of China(50621403)
文摘A simple testing method for secondary or induced stress of surrounding rockwas presented by laboratory experiment, numerical simulation and in situ testing based onthe basic principle of the historical stress restoring method.First, stress equivalent coefficient,which key coefficient of stress restored testing, was obtained by laboratory experiment.Second, experimental results were examined using 3D finite element numericalanalysis and the influence factors were analyzed by 2D finite element numerical analysis.The correctness of induced stress measuring results in situ for highway tunnel wereproved by elastic mechanics theory solution and single-hole stress rescission method.Thenew simple method of induced stress measuring has important practical value for undergroundengineering induced stress field analysis.
文摘Ferulic acid (FA) is a ubiquitous phenolic acid of low toxicity, and sodium ferulate (SF) is its sodium salt. Our previous studies have revealed that FA shows neuroprotective effect and significant antidepressant- like effect. The aim of this study was to investigate its potential neurogenesis-enhancing effect and its role in repair following stress-induced neuronal damage. MTT assay was performed to measure the effect of SF on the growth of rat pheochromocytoma (PC12) cells;morphological and immunocytochemical meth- ods were used for assessing its differentiation-induc- ing action. Chronic mild stress (CMS) tests were per- formed to establish rat model of depression. The histopathology of animal brains was studied to ana- lyze CMS-induced morphological changes and the effect of SF on the repair of CMS-induced brain in- jury. The expressions of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and the proliferation of neural stem cell/neural progenitor cells were assessed in the hippocampi of chronic mild stress (CMS)-induced depression-like model rats by immunohistochemistry and bromodeoxyuridine (BrdU)- incorporation assays, respectively. Our in vitro tests showed that SF promoted the proliferation of PC12 cells in the concentration range of 5 - 320 μM, and induced PC12 cells to differentiate to more mature cells with the morphological characteristics and mo- lecular marker of neuronal-like cells. In vivo tests showed that SF up-regulated the expressions of NGF and BDNF, and induced the proliferation of neural stem cell/neural progenitor cells in the hippocampi of CMS-induced depression-like model rats. This study provides evidences that SF shows neurogenesis-en- hancing effect, and its antidepressant-like effect of SF may be related directly and closely to its above-men- tioned effect.
文摘Lattice-strained Si thin films grown onto SiGe(110)/Si(110) are attracting because of their potential to realize high-speed transistors. In this study we observe surface morphology of Si/SiGe/Si(110) using scanning electron microscopy and we also observe microstructure of the identical position using cross-sectional transmission electron microscopy. These results reveal that crossing of stress-induced twins causes remarkable surface roughness. We propose using vicinal substrate to avoid this phenomenon and our successive experimental results are shown in this paper.
基金supported primarily by the Distinguished Young Foundations of the First Affiliated Hospital of Harbin Medical University(HYD2020JQ002 to Dr Yin)The Science Foundation of the First Affiliated Hospital of Harbin Medical University(2018 L001 to Dr Yin).
文摘Stress-induced cardiomyopathy,in contrast to acute myocardial infarction,is a type of acute heart failure characterized by reversible left ventricular dysfunction.Cardiac imaging primarily reveals left ventricle myocardial stunning,81.7%of which is apical type.Emotional or psychological stress usually precedes the onset of stress-induced cardiomyopathy,which is increasingly being recognized as a unique neurogenic myocardial stunning disease.To distinguish between acute myocardial infarction and acute viral or auto-immune myocarditis,this review summarizes specific mechanisms of myocardial stunning in stress-induced cardiomyopathy,such as calcium disorders,metabolic alterations,anatomical and histological variations in different parts of the left ventricle,and microvascular dysfunction.
基金supported by grants of funds from the Brazilian government(EMBRAPA,CNPq,CAPES and FAPDF).
文摘Drought is a major environmental factor limiting cotton (Gossypium hirsutum L.) productivity worldwide and projected climate changes could increase their negative effects in the future. Thus, targeting the molecular mechanisms correlated with drought tolerance without reducing productivity is a challenge for plant breeding. In this way, we evaluated the effects of water deficit progress on AtDREB2A-CA transgenic cotton plant responses, driven by the stress-inducible rd29 promoter. Besides shoot and root morphometric traits, gas exchange and osmotic adjustment analyses were also included. Here, we present how altered root traits shown by transgenic plants impacted on physiological acclimation responses when submitted to severe water stress. The integration of AtDREB2A-CA into the cotton genome increased total root volume, surface area and total root length, without negatively affecting shoot morphometric growth parameters and nor phenotypic evaluated traits. Additionally, when compared to wild-type plants, transgenic plants (17-T0 plants and its progeny) highlighted a gradual pattern of phenotypic plasticity tosome photosynthetic parameters such as photosynthetic rate and stomatal conductance with water deficit progress. Transgene also promoted greater shoot development and root robustness (greater and deeper root mass) allowing roots to grow into deeper soil layers. The same morpho-physiological trend was observed in the subsequent generation (17.6-T2). Our results suggest that the altered root traits shown by transgenic plants are the major contributors to higher tolerance response, allowing the AtDRE2A-CA-cotton plants to maintain elevated stomatal conductance and assimilate rates and, consequently, reducing their metabolic costs involved in the antioxidant responses activation. These results also suggest that these morpho-physiological changes increased the number of reproductive structures retained per plant (26% higher) when compared with its non-transgenic counterpart. This is the first report of cotton plants overexpressing the AtDRE2A-CA transcription factor, demonstrating a morpho-physiological and yield advantages under drought stress, without displaying any yield penalty under irrigated conditions. The mechanisms by which the root traits influenced the acclimation of the transgenic plants to severe water deficit conditions are also discussed. These data present an opportunity to use this strategy in cotton breeding programs in order to improve drought adaptation toward better rooting features.
基金Project(2014CB644002)supported by the National Key Fundamental Research and Development Project of ChinaProject(51301203)supported by the National Natural Science Foundation of China+1 种基金Project(2015CX004)supported by the Innovation-driven Plan in Central South University,Chinasupported by the Outstanding Graduate Project of Advanced Non-ferrous Metal Structural Materials and Manufacturing Collaborative Innovation Center,China
文摘The Ti-36Nb-2Ta-3Zr-0.350 (mass fraction, %) (TNTZO) alloy was produced by cold isostatic pressing and sintering from elemental powders, followed by hot and cold deformation. The effects of deformation process on microstructures and mechanical properties were investigated using the SEM, TEM, OM and the universal material testing machine. Results show that the alloy can be easily hot forged and cold swaged due to the fine-grained microstructure. Only after cold swaging by 85%, the alloy shows the typical "marble-like" structure. And thecold deformation is accompanied by stress-induced a" phase transformations. Moreover, both the strength and the ductility of the alloy are significantly improved by hot and cold working.
基金Projects(51171123,51271128)supported by the National Natural Science Foundation of China
文摘To address the role of the HCP martensite in CoAl and CoNi shape memory alloys, the relationship between the shape memory effect (SME) and the content of the thermal and stress-induced HCP martensite was investigated in the solution-treated CoAl and CoNi alloys. In-situ optical observations were employed to investigate the contents of thermal HCP martensite before and after deep cooling and its influence on the stress-induced HCP martensite transformation and SME. The results show that the SME in both the CoAl and the CoNi alloys results from the stress-induced HCP martensite. The role of the thermal HCP martensite in both of them is the strengthening of the matrix. The much higher yield strength in the solution-treated CoAl alloy due to solution strengthening of Al is responsible for its better SME compared with the CoNi alloy.
基金supported by the National Natural Science Foundation of China,No.81870979(to JJL),No.81271366(to MLY)the National Key R&D Program of China,No.2018YFF0301104(to JJL)+4 种基金the Special Fund for Basic Scientific Research of Central Public Research Institutes of China,No.2018CZ-1(to JJL)the Basic Scientific Research Foundation of China Rehabilitation Research Center,No.2018ZX-30(to FG)the Scientific Research Foundation of CRRC,No.2012C-1(to JJL)the Major Science and Technology Project of Beijing of China,No.D161100002816004(to JJL)the Special Capital Health Research and Development of China,No.2018-1-6011(to JJL)
文摘Non-coding RNAs(ncRNAs) are a type of RNA that is not translated into proteins. Transfer RNAs(tRNAs), a type of ncRNA, are the second most abundant type of RNA in cells. Recent studies have shown that tRNAs can be cleaved into a heterogeneous population of ncRNAs with lengths of 18–40 nucleotides, known as tRNA-derived small RNAs(tsRNAs). There are two main types of tsRNA, based on their length and the number of cleavage sites that they contain: tRNA-derived fragments and tRNA-derived stress-induced RNAs. These RNA species were first considered to be byproducts of tRNA random cleavage. However, mounting evidence has demonstrated their critical functional roles as regulatory factors in the pathophysiological processes of various diseases, including neurological diseases. However, the underlying mechanisms by which tsRNAs affect specific cellular processes are largely unknown. Therefore, this study comprehensively summarizes the following points:(1) The biogenetics of tsRNA, including their discovery, classification, formation, and the roles of key enzymes.(2) The main biological functions of tsRNA, including its miRNA-like roles in gene expression regulation, protein translation regulation, regulation of various cellular activities, immune mediation, and response to stress.(3) The potential mechanisms of pathophysiological changes in neurological diseases that are regulated by tsRNA, including neurodegeneration and neurotrauma.(4) The identification of the functional diversity of tsRNA may provide valuable information regarding the physiological and pathophysiological mechanisms of neurological disorders, thus providing a new reference for the clinical treatment of neurological diseases. Research into tsRNAs in neurological diseases also has the following challenges: potential function and mechanism studies, how to accurately quantify expression, and the exact relationship between tsRNA and miRNA. These challenges require future research efforts.
基金This research was funded by the National Science Foundation of China(Grant Nos.U1765206 and 51979268)Innovation Research Group Project of Natural Science Foundation of Hubei Province(Grant No.ZRQT2020000114).
文摘Understanding three-dimensional(3D)in situ stress field is of key importance for estimating the stability of large deep underground cavern groups near valleys.However,the complete 3D in situ stress fields around large deep underground cavern groups are difficult to determine based on in situ stress data from a limited number of measuring points due to the insufficient representativeness and unreliability of such measurements.In this study,an integrated approach for estimating the 3D in situ stress field around a large deep underground cavern group near a valley is developed based on incomplete in situ stress measurements and the stress-induced failures of tunnels excavated prior to the step excavation of the cavern group.This integrated approach is implemented via four interrelated and progressive basic steps,i.e.inference of the regional tectonic stress field direction,analyses of in situ stress characteristics and measurement reliability,regression-based in situ stress field analysis and reliability assessment,and modified in situ stress field analysis and reliability verification.The orientations and magnitudes of the 3D in situ stress field can be analyzed and obtained at a strategic level following these four basic steps.First,the tectonic stress field direction around the cavern group is deduced in accordance with the regional tectonic framework and verified using a regional crustal deformation velocity map.Second,the reliability of the in situ stress measurements is verified based on the locations and depths of stressinduced brittle failures in small tunnels(such as exploratory tunnels and pilot tunnels)within the excavation range of the cavern group.Third,considering the influences of the valley topography and major geological structures,the 3D in situ stress field is regressed using numerical simulation and multiple linear regression techniques based on the in situ stress measurements.Finally,the regressed in situ stress field is further modified and reverified based on the stress-induced brittle failures of small tunnels and the initial excavation of the cavern group.A case study of the Shuangjiangkou underground cavern group demonstrates that the proposed approach is reliable for estimating the 3D in situ stress fields of large deep underground cavern groups near valleys,thus contributing to the optimization of practical excavation and design of mitigating the instability of the surrounding rock masses during step excavations.