Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects.Previous studies have revealed that using the differential form of th...Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects.Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases,such as bending analysis of cantilevers,and recourse must be made to the integral version.In this article,a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain-and stress-driven integral nonlocal models.This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation.First,the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy.Also,in each case,the governing equation is obtained in both strong and weak forms.To solve numerically the derived equations,matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule.It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes.Also,it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.展开更多
Several studies indicate that Eringen's nonlocal model may lead to some inconsistencies for both Euler-Bernoulli and Timoshenko beams, such as cantilever beams subjected to an end point force and fixed-fixed beams...Several studies indicate that Eringen's nonlocal model may lead to some inconsistencies for both Euler-Bernoulli and Timoshenko beams, such as cantilever beams subjected to an end point force and fixed-fixed beams subjected a uniform distributed load. In this paper, the elastic buckling behavior of nanobeams, including both EulerBernoulli and Timoshenko beams, is investigated on the basis of a stress-driven nonlocal integral model. The constitutive equations are the Fredholm-type integral equations of the first kind, which can be transformed to the Volterra integral equations of the first kind. With the application of the Laplace transformation, the general solutions of the deflections and bending moments for the Euler-Bernoulli and Timoshenko beams as well as the rotation and shear force for the Timoshenko beams are obtained explicitly with several unknown constants. Considering the boundary conditions and extra constitutive constraints, the characteristic equations are obtained explicitly for the Euler-Bernoulli and Timoshenko beams under different boundary conditions, from which one can determine the critical buckling loads of nanobeams. The effects of the nonlocal parameters and buckling order on the buckling loads of nanobeams are studied numerically, and a consistent toughening effect is obtained.展开更多
A torsional static and free vibration analysis of the functionally graded nanotube(FGNT)composed of two materials varying continuously according to the power-law along the radial direction is performed using the bi-He...A torsional static and free vibration analysis of the functionally graded nanotube(FGNT)composed of two materials varying continuously according to the power-law along the radial direction is performed using the bi-Helmholtz kernel based stress-driven nonlocal integral model.The differential governing equation and boundary conditions are deduced on the basis of Hamilton’s principle,and the constitutive relationship is expressed as an integral equation with the bi-Helmholtz kernel.Several nominal variables are introduced to simplify the differential governing equation,integral constitutive equation,and boundary conditions.Rather than transforming the constitutive equation from integral to differential forms,the Laplace transformation is used directly to solve the integro-differential equations.The explicit expression for nominal torsional rotation and torque contains four unknown constants,which can be determined with the help of two boundary conditions and two extra constraints from the integral constitutive relation.A few benchmarked examples are solved to illustrate the nonlocal influence on the static torsion of a clamped-clamped(CC)FGNT under torsional constraints and a clamped-free(CF)FGNT under concentrated and uniformly distributed torques as well as the torsional free vibration of an FGNT under different boundary conditions.展开更多
In this work,the size-dependent buckling of functionally graded(FG)Bernoulli-Euler beams under non-uniform temperature is analyzed based on the stressdriven nonlocal elasticity and nonlocal heat conduction.By utilizin...In this work,the size-dependent buckling of functionally graded(FG)Bernoulli-Euler beams under non-uniform temperature is analyzed based on the stressdriven nonlocal elasticity and nonlocal heat conduction.By utilizing the variational principle of virtual work,the governing equations and the associated standard boundary conditions are systematically extracted,and the thermal effect,equivalent to the induced thermal load,is explicitly assessed by using the nonlocal heat conduction law.The stressdriven constitutive integral equation is equivalently transformed into a differential form with two non-standard constitutive boundary conditions.By employing the eigenvalue method,the critical buckling loads of the beams with different boundary conditions are obtained.The numerically predicted results reveal that the growth of the nonlocal parameter leads to a consistently strengthening effect on the dimensionless critical buckling loads for all boundary cases.Additionally,the effects of the influential factors pertinent to the nonlocal heat conduction on the buckling behavior are carefully examined.展开更多
文摘Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects.Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases,such as bending analysis of cantilevers,and recourse must be made to the integral version.In this article,a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain-and stress-driven integral nonlocal models.This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation.First,the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy.Also,in each case,the governing equation is obtained in both strong and weak forms.To solve numerically the derived equations,matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule.It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes.Also,it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.
基金Project supported by the National Natural Science Foundation of China(No.11672131)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures of China(No.MCMS-0217G02)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.11672131)。
文摘Several studies indicate that Eringen's nonlocal model may lead to some inconsistencies for both Euler-Bernoulli and Timoshenko beams, such as cantilever beams subjected to an end point force and fixed-fixed beams subjected a uniform distributed load. In this paper, the elastic buckling behavior of nanobeams, including both EulerBernoulli and Timoshenko beams, is investigated on the basis of a stress-driven nonlocal integral model. The constitutive equations are the Fredholm-type integral equations of the first kind, which can be transformed to the Volterra integral equations of the first kind. With the application of the Laplace transformation, the general solutions of the deflections and bending moments for the Euler-Bernoulli and Timoshenko beams as well as the rotation and shear force for the Timoshenko beams are obtained explicitly with several unknown constants. Considering the boundary conditions and extra constitutive constraints, the characteristic equations are obtained explicitly for the Euler-Bernoulli and Timoshenko beams under different boundary conditions, from which one can determine the critical buckling loads of nanobeams. The effects of the nonlocal parameters and buckling order on the buckling loads of nanobeams are studied numerically, and a consistent toughening effect is obtained.
基金Project supported by the National Natural Science Foundation of China(No.11672131)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘A torsional static and free vibration analysis of the functionally graded nanotube(FGNT)composed of two materials varying continuously according to the power-law along the radial direction is performed using the bi-Helmholtz kernel based stress-driven nonlocal integral model.The differential governing equation and boundary conditions are deduced on the basis of Hamilton’s principle,and the constitutive relationship is expressed as an integral equation with the bi-Helmholtz kernel.Several nominal variables are introduced to simplify the differential governing equation,integral constitutive equation,and boundary conditions.Rather than transforming the constitutive equation from integral to differential forms,the Laplace transformation is used directly to solve the integro-differential equations.The explicit expression for nominal torsional rotation and torque contains four unknown constants,which can be determined with the help of two boundary conditions and two extra constraints from the integral constitutive relation.A few benchmarked examples are solved to illustrate the nonlocal influence on the static torsion of a clamped-clamped(CC)FGNT under torsional constraints and a clamped-free(CF)FGNT under concentrated and uniformly distributed torques as well as the torsional free vibration of an FGNT under different boundary conditions.
基金Project supported by the National Natural Science Foundation of China(Nos.51435008 and 51705247)the China Postdoctoral Science Foundation(No.2020M671474)
文摘In this work,the size-dependent buckling of functionally graded(FG)Bernoulli-Euler beams under non-uniform temperature is analyzed based on the stressdriven nonlocal elasticity and nonlocal heat conduction.By utilizing the variational principle of virtual work,the governing equations and the associated standard boundary conditions are systematically extracted,and the thermal effect,equivalent to the induced thermal load,is explicitly assessed by using the nonlocal heat conduction law.The stressdriven constitutive integral equation is equivalently transformed into a differential form with two non-standard constitutive boundary conditions.By employing the eigenvalue method,the critical buckling loads of the beams with different boundary conditions are obtained.The numerically predicted results reveal that the growth of the nonlocal parameter leads to a consistently strengthening effect on the dimensionless critical buckling loads for all boundary cases.Additionally,the effects of the influential factors pertinent to the nonlocal heat conduction on the buckling behavior are carefully examined.