The FE simulation results of transverse stresses and strains during welding of thin aluminum alloy plate are presented. The results indicate that restraint condition is the main factor that determines whether or not h...The FE simulation results of transverse stresses and strains during welding of thin aluminum alloy plate are presented. The results indicate that restraint condition is the main factor that determines whether or not hot cracking will occur. With rigid restraint hot cracking (crater cracking) will occur at the arc-stopping end, and such cracking usually will not occur without external restraint. But under restraint-free condition it is easy for terminal cracks to occur.展开更多
In this paper,it is shown that for stable,steady state operation of devices typical of microwave and millimeter wave electronics,no negative differential capacitance is possible with conventional thinking.However,it m...In this paper,it is shown that for stable,steady state operation of devices typical of microwave and millimeter wave electronics,no negative differential capacitance is possible with conventional thinking.However,it may be possible,with strain engineering of materials,to obtain some if not all elements of the differential capacitance tensor which are negative.Rigorous derivations are provided based upon analyzing the physics using thermodynamic phenomenological free energy.It should be emphasized that,even with strain engineering,and possible discovery of some negative capacitive elements,stable operation will not be obtained because the thermodynamics precludes it.展开更多
文摘The FE simulation results of transverse stresses and strains during welding of thin aluminum alloy plate are presented. The results indicate that restraint condition is the main factor that determines whether or not hot cracking will occur. With rigid restraint hot cracking (crater cracking) will occur at the arc-stopping end, and such cracking usually will not occur without external restraint. But under restraint-free condition it is easy for terminal cracks to occur.
文摘In this paper,it is shown that for stable,steady state operation of devices typical of microwave and millimeter wave electronics,no negative differential capacitance is possible with conventional thinking.However,it may be possible,with strain engineering of materials,to obtain some if not all elements of the differential capacitance tensor which are negative.Rigorous derivations are provided based upon analyzing the physics using thermodynamic phenomenological free energy.It should be emphasized that,even with strain engineering,and possible discovery of some negative capacitive elements,stable operation will not be obtained because the thermodynamics precludes it.