The stretchable sensor wrapped around a foldable airfoil or embedded inside of it has great potential for use in the monitoring of the structural status of the foldable airfoil.The design methodology is important to t...The stretchable sensor wrapped around a foldable airfoil or embedded inside of it has great potential for use in the monitoring of the structural status of the foldable airfoil.The design methodology is important to the development of the stretchable sensor for status monitoring on the foldable airfoil.According to the requirement of mechanical flexibility of the sensor,the combined use of a layered flexible structural formation and a strain isolation layer is implemented.An analytical higher-order model is proposed to predict the stresses of the strain-isolation layer based on the shear-lag model for the safe design of the flexible and stretchable sensors.The normal stress and shear stress equations in the constructed structure of the sensors are obtained by the proposed model.The stress distribution in the structure is investigated when bending load is applied to the structures.The numerical results show that the proposed model can predict the variation of normal stress and shear stress along the thickness of the strain-isolation(polydimethylsiloxane)layer accurately.The results by the proposed model are in good agreement with the finite element method,in which the normal stress is variable while the shear stress is invariable along the thickness direction of strain-isolation layer.The high-order model is proposed to predict the stresses of the layered structure of the flexible and stretchable sensor for monitoring the status of the foldable airfoil.展开更多
Vascular endothelium can perceive fluid shear stress(FSS)and cyclic circumferential stretch(CCS)caused by the pulsatile blood flow,and translate the hemodynamics into biochemical signals to regulate vascular pathophys...Vascular endothelium can perceive fluid shear stress(FSS)and cyclic circumferential stretch(CCS)caused by the pulsatile blood flow,and translate the hemodynamics into biochemical signals to regulate vascular pathophysiology.However,existing methods provide little information about the real-time biochemical responses of endothelium when exposed to dynamic FSS and CCS.Herein,a vasculature-on-a-chip integrated with stretchable sensing is engineered for recapitulating the hemodynamic milieus and in-situ monitoring biochemical responses of endothelial monolayer.The integrated device is developed by sandwiching a robust stretchable electrode between an upper fluidic channel and a lower pneumatic channel.The fluidic and pneumatic channels enable the simultaneous recapitulation of both FSS and CCS,and the integrated sensor exhibits excellent cell-adhesive capacity and electrochemical sensing stability even after long-term hemodynamic exposure.These allow real-time monitoring of hemodynamic form-and duration-dependent endothelium responses,and further efficacy investigation about a recommended drug for COVID-19,demonstrating the great potential in vascular disease and drug screening.展开更多
Breathing is an inherent human activity;however,the composition of the air we inhale and gas exhale remains unknown to us.To address this,wearable vapor sensors can help people monitor air composition in real time to ...Breathing is an inherent human activity;however,the composition of the air we inhale and gas exhale remains unknown to us.To address this,wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks,and for the early detection and treatment of diseases for home healthcare.Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable.Functionalized hydrogels are intrinsically conductive,self-healing,self-adhesive,biocompatible,and room-temperature sensitive.Compared with traditional rigid vapor sensors,hydrogel-based gas and humidity sensors can directly fit human skin or clothing,and are more suitable for real-time monitoring of personal health and safety.In this review,current studies on hydrogel-based vapor sensors are investigated.The required properties and optimization methods of wearable hydrogel-based sensors are introduced.Subsequently,existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized.Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented.Moreover,the potential of hydrogels in the field of vapor sensing is elucidated.Finally,the current research status,challenges,and future trends of hydrogel gas/humidity sensing are discussed.展开更多
With the advent of the 5G era and the rise of the Internet of Things,various sensors have received unprecedented attention,especially wearable and stretchable sensors in the healthcare field.Here,a stretchable,self-he...With the advent of the 5G era and the rise of the Internet of Things,various sensors have received unprecedented attention,especially wearable and stretchable sensors in the healthcare field.Here,a stretchable,self-healable,self-adhesive,and room-temperature oxygen sensor with excellent repeatability,a full concentration detection range(0-100%),low theoretical limit of detection(5.7 ppm),high sensitivity(0.2%/ppm),good linearity,excellent temperature,and humidity tolerances is fabricated by using polyacrylamide-chitosan(PAM-CS)double network(DN)organohydrogel as a novel transducing material.The PAM-CS DN organohydrogel is transformed from the PAM-CS composite hydrogel using a facile soaking and solvent replacement strategy.Compared with the pristine hydrogel,the DN organohydrogel displays greatly enhanced mechanical strength,moisture retention,freezing resistance,and sensitivity to oxygen.Notably,applying the tensile strain improves both the sensitivity and response speed of the organohydrogel-based oxygen sensor.Furthermore,the response to the same concentration of oxygen before and after self-healing is basically the same.Importantly,we propose an electrochemical reaction mechanism to explain the positive current shift of the oxygen sensor and corroborate this sensing mechanism through rationally designed experiments.The organohydrogel oxygen sensor is used to monitor human respiration in real-time,verifying the feasibility of its practical application.This work provides ideas for fabricating more stretchable,self-healable,self-adhesive,and high-performance gas sensors using ion-conducting organohydrogels.展开更多
Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the ente...Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the entertainment,health monitoring, and medical care sectors. In this work,conducting copper electrodes were fabricated onpolydimethylsiloxane as sensitive stretchable microsensors by integrating laser direct writing and transfer printing approaches. The copper electrode was reduced from copper salt using laser writing rather than the general approach of printing with pre-synthesized copper or copper oxide nanoparticles. An electrical resistivity of 96 l X cm was achieved on 40-lm-thick Cu electrodes on flexible substrates. The motion sensing functionality successfully demonstrated a high sensitivity and mechanical robustness.This in situ fabrication method leads to a path toward electronic devices on flexible substrates.展开更多
Today,the vast majority of microelectromechanical system(MEMS)sensors are mechanically rigid and therefore suffer from disadvantages when used in intimately wearable or bio-integrated applications.By applying new engi...Today,the vast majority of microelectromechanical system(MEMS)sensors are mechanically rigid and therefore suffer from disadvantages when used in intimately wearable or bio-integrated applications.By applying new engineering strategies,mechanically bendable and stretchable MEMS devices have been successfully demonstrated.This article reviews recent progress in this area,focusing on high-performance flexible devices based on inorganic thin films.We start with the common design and fabrication strategies for flexibility and stretchability,summarize the recent application-oriented flexible devices,and conclude with criteria and opportunities for the future development of flexible MEMS sensors.展开更多
Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low ...Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low rescue efficiency.The multimodal electronic skin(e-skin)proposed not only reproduces the pressure,temperature,and humidity sensing capabilities of natural skin but also develops sensing functions beyond it—perceiving object proximity and NO2 gas.Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin.Rescue robots integrated with multimodal e-skin and artificial intelligence(AI)algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping,laying the foundation for automated post-earthquake rescue.Besides,the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time,thereby adopting appropriate measures to protect trapped people from the toxic environment.Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities,which,as an interface for interaction with the physical world,dramatically expands intelligent robots’application scenarios.展开更多
Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors.However,traditional humidity sensors suffer from a trade-off between deform...Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors.However,traditional humidity sensors suffer from a trade-off between deformability,sensitivity,and transparency,and thus the development of high-performance,stretchable,and low-cost humidity sensors is urgently needed as wearable electronics.Here,ultrasensitive,highly deformable,and transparent humidity sensors are fabricated based on cost-effective polyacrylamide-based double network hydrogels.Concomitantly,a general method for preparing hydrogel films with controllable thickness is proposed to boost the sensitivity of hydrogel-based sensors due to the extensively increased specific surface area,which can be applied to different polymer networks and facilitate the development of flexible integrated electronics.In addition,sustainable tapioca rich in hydrophilic polar groups is introduced for the first time as a second cross-linked network,exhibiting excellent water adsorption capacity.Through the synergistic optimization of structure and composition,the obtained hydrogel film exhibits an ultrahigh sensitivity of 13,462.1%/%RH,which is unprecedented.Moreover,the hydrogel film-based sensor exhibits excellent repeatability and the ability to work normally under stretching with even enhanced sensitivity.As a proof of concept,we integrate the stretchable sensor with a specially designed wireless circuit and mask to fabricate a wireless respiratory interruption detection system with Bluetooth transmission,enabling real-time monitoring of human health status.This work provides a general strategy to construct high-performance,stretchable,and miniaturized hydrogel-based sensors as next-generation wearable devices for real-time monitoring of various physiological signals.展开更多
Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome gene...Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome general check-ups. The wearable technique provides a continuous measurement method for health monitoring by tracking a person's physiological data and analyzing it locally or remotely.During the health monitoring process,different kinds of sensors convert physiological signals into electrical or optical signals that can be recorded and transmitted, consequently playing a crucial role in wearable techniques. Wearable application scenarios usually require sensors to possess excellent flexibility and stretchability. Thus, designing flexible and stretchable sensors with reliable performance is the key to wearable technology. Smart composite hydrogels, which have tunable electrical properties, mechanical properties, biocompatibility, and multi-stimulus sensitivity, are one of the best sensitive materials for wearable health monitoring. This review summarizes the common synthetic and performance optimization strategies of smart composite hydrogels and focuses on the current application of smart composite hydrogels in the field of wearable health monitoring.展开更多
Large deformability and high sensitivity is difficult to be realized simultaneously in flexible sensors.Herein,taking advantage of the high permittivity and highly active surfaces of the ultrasmall barium titanate nan...Large deformability and high sensitivity is difficult to be realized simultaneously in flexible sensors.Herein,taking advantage of the high permittivity and highly active surfaces of the ultrasmall barium titanate nanoparticles(BT NPs)and the high stretchability of the p(BA-GMA)elastomer matrix,we propose a high-performance soft stretchable sensor.The addition of the ultrasmall BT NPs can not only increase the permittivity and capacitance of polyacrylate-matrix composite dielectric material to obtain a high sensitivity,but also basically maintains the excellent mechanical properties of the polymer matrix.The dielectric constants of the composite films increase from 5.68 to 13.13 at 10 kHz with the increase of BT NPs content from 0 to 15 vol.%,which results in a high capacitance of 236.16 pF for 15 vol.%BT/p(BA-GMA)sensor.Combining the high permittivity and the large deformability(a maximal deformation of 87.2%),the 15 vol.%BT/p(BA-GMA)sensor has high sensitivity and shows high linearity and stable output even if under dynamic measurement.The dual-mode sensor that utilizes the orthogonality of capacitance-resistance is designed,which shows excellent performance in monitoring human body movements and noncontact measurement.The results present that the BT/p(BA-GMA)-based sensor has high stability and reliability not exceed 65C,which can meet the application requirements in dynamic monitoring.展开更多
Stretchable strain sensors play a key role in motion detection and human-machine interface functionality,and deformation control.However,their sensitivity is often limited by the Poisson effect of elastic substrates.I...Stretchable strain sensors play a key role in motion detection and human-machine interface functionality,and deformation control.However,their sensitivity is often limited by the Poisson effect of elastic substrates.In this study,a stretchable strain sensor based on a continuous-fiber-reinforced auxetic structure was proposed and fabricated using a direct ink writing(DIW)3D printing process.The application of multi-material DIW greatly simplifies the fabrication process of a sensor with an auxetic structure(auxetic sensor).The auxiliary auxetic struc-ture was innovatively printed using a continuous-fiber-reinforced polydimethylsiloxane composite(Fiber-PDMS)to balance the rigidity and flexibility of the composite.The increase in stiffness enhances the negative Poisson’s ratio effect of the auxetic structure,which can support the carbon nanotube-polydimethylsiloxane composite(CNT-PDMS)stretchable sensor to produce a significant lateral expansion when stretched.It is shown that the structural Poisson’s ratio of the sensor decreased from 0.42 to−0.33 at 20%tensile strain,and the bidirectional tensile strain increases the sensor sensitivity by 2.52 times(gage factor to 18.23).The Fiber-PDMS composite maintains the excellent flexibility of the matrix material.The auxetic sensor exhibited no structural damage af-ter 150 cycles of tension and the signal output exhibited high stability.In addition,this study demonstrates the significant potential of auxetic sensors in the field of deformation control.展开更多
Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensi...Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensitivity at low strain is generally insufficient for practical application.Herein,we report an easy and effective way to improve the resistive response to low strain for CECs with segregated network structure via adding stiff alumina into carbon nanostructures(CNS).The CEC containing 0.7 wt%CNS and 5 wt%Al_(2)O_(3) almost sustains the same elasticity(elongation at break of~900%)and conductivity(0.8 S/m)as the control,while the piezoresistive sensitivity is significantly improved.Thermoplastic polyurethane(TPU)composites with a segregated network of hybrid nanofillers(CNS and Al_(2)O_(3))show much higher strain sensitivity(Gauge factor,GF-566)at low strain(45%strain)due to a local stress concentration effect,this sensitivity is superior to that of TPU/CNS composites(GF-11).Such a local stress concentration effect depends on alumina content and its distribution at the TPU particle interface.In addition,CECs with hybrid fillers show better reproducibility in cyclic piezoresistive behavior testing than the control.This work offers an easy method for fabricating CECs with a segregated filler network offering stretchable strain sensors with a high strain sensitivity.展开更多
Flexible strain sensors exhibit outstanding advantages in terms of sensitivity and stability by detecting changes in physical signals.It can be easily attached to human skin and clothed to achieve monitoring of human ...Flexible strain sensors exhibit outstanding advantages in terms of sensitivity and stability by detecting changes in physical signals.It can be easily attached to human skin and clothed to achieve monitoring of human motion and health.However,general sensing material shows low stretchability and cannot respond to signals under large deformation.In this work,a highly stretchable polymer composite was developed by adding small amount(0.17 wt.%)of silver nanowires(AgNWs)in stretchable conductive polymer materials.The conductivity of polymer/AgNWs composite is 1.3 S/m with the stretchability up to 500%.The stretchable strain sensor based on the polymer/AgNWs composite can respond to strain signals in real time,even for 1%strain response,and shows excellent stability over 1,000 loading/unloading cycles.Moreover,the strain sensor can be attached to human skin and clothed to monitor joints,throat and pulse of the human body.The human body electrocardiogram(ECG)signal was detected successfully with the polymer/AgNWs electrode,which is comparable to the signal obtained by the commercial electrode.Overall,the sensors enable monitoring of human movement and health.These advantages make it a potential application in wearable devices and electronic skin.展开更多
Carbon nanotubes have potential applications in flexible and stretchable devices due to their remarkable electromechanical properties.Flexible and stretchable strain sensors of multi-walled carbon nanotubes(MWCNTs)w...Carbon nanotubes have potential applications in flexible and stretchable devices due to their remarkable electromechanical properties.Flexible and stretchable strain sensors of multi-walled carbon nanotubes(MWCNTs)with aligned or random structures were fabricated on poly-dimethylsiloxane(PDMS) substrate with different techniques.It was observed that the spraycoatedtechniquebased strain sensor fabricated on PDMS substrate showed higher sensitivity higher stretchability,better linearity and excellent longer time stability than the sensor fabricated with other methods presented in this work.The scanning electron microscopy images indicated the spray coating technique can produce a better uniform and compact CNT network,which is the important role affecting the performance of CNT-based flexible strain sensors.展开更多
Stretchable strain sensor detects a wide range of strain variation and is therefore a key component in various applications.Unlike traditional ones made of elastomers doped with conductive components or fabricated wit...Stretchable strain sensor detects a wide range of strain variation and is therefore a key component in various applications.Unlike traditional ones made of elastomers doped with conductive components or fabricated with liquid conductors,ionically conductive hydrogel-based strain sensors remain conductive under large deformations and are biocompatible.However,dehydration is a challenging issue for the latter.Researchers have developed hydrogel-elastomer-based strain sensors where an elastomer matrix encapsulates a hydrogel circuit to prevent its dehydration.However,the reported multistep approaches are generally time-consuming.Our group recently reported a multimaterial 3D printing approach that enables fast fabrication of such sensors,yet requires a self-built digital-light-processing-based multimaterial 3D printer.Here,we report a simple projection lithography method to fabricate hydrogel-elastomer-based stretchable strain sensors within 5 minutes.This method only requires a UV projector/lamp with photomasks;the chemicals are commercially available;the protocols for preparing the polymer precursors are friendly to users without chemistry background.Moreover,the manufacturing flexibility allows users to readily pattern the sensor circuit and attach the sensor to a 3D printed soft pneumatic actuator to enable strain sensing on the latter.The proposed approach paves a simple and versatile way to fabricate hydrogel-elastomer-based stretchable strain sensors and flexible electronic devices.展开更多
Ascribed to its wide sensing range,high sensitivity,and low stiff-ness to match target objects with complex 3D shapes,the stretch-able strain sensor has shown its promising applications in various fields,ranging from ...Ascribed to its wide sensing range,high sensitivity,and low stiff-ness to match target objects with complex 3D shapes,the stretch-able strain sensor has shown its promising applications in various fields,ranging from healthcare,bodynet,and intelligent traffic system,to the robotic system.This paper presents a low-cost and straightforward fabrication technology for the stretchable strain fiber with the combined attributes of a wide sensing range,excep-tional linearity,and high durability.The hybrid composite consist-ing of carbon black and silicone is utilized as the functional material to respond to the external mechanical deformation due to the piezoresistive effect.To address the remarkable hysteresis of the CB-silicone composites,the latex tubes with excellent mechanical robustness and a considerable accessible tensile strain are intro-duced as the outer supporting components.After injecting the conductive CB-silicone composite into these tubes,the stretchable strain fibers are successfully prepared.Notably,the stretchable strain sensor exhibits linearity(R^(2)=0.9854)in a wide sensing range(0-400%)and remarkable durability even after the 2500 cycles under 100%tension.Additionally,the potential of this stretchable strain fiber as the wearable strain sensor and the realtime feedback is demonstrated by detecting the body motion and the expansion devices.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51075327)Open Project of State Key Laboratory for Strength and Vibration of Mechanical Structures of China(Grant No.SV2014-KF-08)Shaanxi Provincial Natural Science Foundation of China(Grant No.2014JM2-5082)
文摘The stretchable sensor wrapped around a foldable airfoil or embedded inside of it has great potential for use in the monitoring of the structural status of the foldable airfoil.The design methodology is important to the development of the stretchable sensor for status monitoring on the foldable airfoil.According to the requirement of mechanical flexibility of the sensor,the combined use of a layered flexible structural formation and a strain isolation layer is implemented.An analytical higher-order model is proposed to predict the stresses of the strain-isolation layer based on the shear-lag model for the safe design of the flexible and stretchable sensors.The normal stress and shear stress equations in the constructed structure of the sensors are obtained by the proposed model.The stress distribution in the structure is investigated when bending load is applied to the structures.The numerical results show that the proposed model can predict the variation of normal stress and shear stress along the thickness of the strain-isolation(polydimethylsiloxane)layer accurately.The results by the proposed model are in good agreement with the finite element method,in which the normal stress is variable while the shear stress is invariable along the thickness direction of strain-isolation layer.The high-order model is proposed to predict the stresses of the layered structure of the flexible and stretchable sensor for monitoring the status of the foldable airfoil.
基金supported by the National Key Research and Development Program of China(2022YFA1104802)the National Natural Science Foundation of China(22122408,21721005,22090051)。
文摘Vascular endothelium can perceive fluid shear stress(FSS)and cyclic circumferential stretch(CCS)caused by the pulsatile blood flow,and translate the hemodynamics into biochemical signals to regulate vascular pathophysiology.However,existing methods provide little information about the real-time biochemical responses of endothelium when exposed to dynamic FSS and CCS.Herein,a vasculature-on-a-chip integrated with stretchable sensing is engineered for recapitulating the hemodynamic milieus and in-situ monitoring biochemical responses of endothelial monolayer.The integrated device is developed by sandwiching a robust stretchable electrode between an upper fluidic channel and a lower pneumatic channel.The fluidic and pneumatic channels enable the simultaneous recapitulation of both FSS and CCS,and the integrated sensor exhibits excellent cell-adhesive capacity and electrochemical sensing stability even after long-term hemodynamic exposure.These allow real-time monitoring of hemodynamic form-and duration-dependent endothelium responses,and further efficacy investigation about a recommended drug for COVID-19,demonstrating the great potential in vascular disease and drug screening.
基金Jin Wu acknowledges financial support from the National Natural Science Foundation of China(No.61801525)the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515010693)+1 种基金the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.22lgqb17)the Independent Fund of the State Key Laboratory of Optoelectronic Materials and Technologies(Sun Yat-sen University)under grant No.OEMT-2022-ZRC-05.
文摘Breathing is an inherent human activity;however,the composition of the air we inhale and gas exhale remains unknown to us.To address this,wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks,and for the early detection and treatment of diseases for home healthcare.Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable.Functionalized hydrogels are intrinsically conductive,self-healing,self-adhesive,biocompatible,and room-temperature sensitive.Compared with traditional rigid vapor sensors,hydrogel-based gas and humidity sensors can directly fit human skin or clothing,and are more suitable for real-time monitoring of personal health and safety.In this review,current studies on hydrogel-based vapor sensors are investigated.The required properties and optimization methods of wearable hydrogel-based sensors are introduced.Subsequently,existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized.Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented.Moreover,the potential of hydrogels in the field of vapor sensing is elucidated.Finally,the current research status,challenges,and future trends of hydrogel gas/humidity sensing are discussed.
基金support from the National Natural Science Foundation of China(61801525)the Guangdong Basic and Applied Basic Research Foundation(2020A1515010693)+1 种基金the Guangdong Natural Science Funds Grant(2018A030313400),the Science and Technology Program of Guangzhou(201904010456)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(2021qntd09).
文摘With the advent of the 5G era and the rise of the Internet of Things,various sensors have received unprecedented attention,especially wearable and stretchable sensors in the healthcare field.Here,a stretchable,self-healable,self-adhesive,and room-temperature oxygen sensor with excellent repeatability,a full concentration detection range(0-100%),low theoretical limit of detection(5.7 ppm),high sensitivity(0.2%/ppm),good linearity,excellent temperature,and humidity tolerances is fabricated by using polyacrylamide-chitosan(PAM-CS)double network(DN)organohydrogel as a novel transducing material.The PAM-CS DN organohydrogel is transformed from the PAM-CS composite hydrogel using a facile soaking and solvent replacement strategy.Compared with the pristine hydrogel,the DN organohydrogel displays greatly enhanced mechanical strength,moisture retention,freezing resistance,and sensitivity to oxygen.Notably,applying the tensile strain improves both the sensitivity and response speed of the organohydrogel-based oxygen sensor.Furthermore,the response to the same concentration of oxygen before and after self-healing is basically the same.Importantly,we propose an electrochemical reaction mechanism to explain the positive current shift of the oxygen sensor and corroborate this sensing mechanism through rationally designed experiments.The organohydrogel oxygen sensor is used to monitor human respiration in real-time,verifying the feasibility of its practical application.This work provides ideas for fabricating more stretchable,self-healable,self-adhesive,and high-performance gas sensors using ion-conducting organohydrogels.
基金supported by National Natural Science Foundation of China (51575016)the Beijing Oversea High-Level Talent Project+1 种基金strategic research Grant (KZ20141000500, B-type) of Beijing Natural Science Foundation P.R. Chinathe support by the China Scholarship Council (20160654015) for his research stay at the Institute of Physical and Chemical Research,Wako, Japan
文摘Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the entertainment,health monitoring, and medical care sectors. In this work,conducting copper electrodes were fabricated onpolydimethylsiloxane as sensitive stretchable microsensors by integrating laser direct writing and transfer printing approaches. The copper electrode was reduced from copper salt using laser writing rather than the general approach of printing with pre-synthesized copper or copper oxide nanoparticles. An electrical resistivity of 96 l X cm was achieved on 40-lm-thick Cu electrodes on flexible substrates. The motion sensing functionality successfully demonstrated a high sensitivity and mechanical robustness.This in situ fabrication method leads to a path toward electronic devices on flexible substrates.
基金the National Natural Science Foundation of China(No.62001322)the Tianjin Municipal Science and Technology Project(No.20JCQNJC011200)+1 种基金the National Key Research and Development Program of China(No.2020YFB2008801)the Nanchang Institute for Microtechnology of Tianjin University.
文摘Today,the vast majority of microelectromechanical system(MEMS)sensors are mechanically rigid and therefore suffer from disadvantages when used in intimately wearable or bio-integrated applications.By applying new engineering strategies,mechanically bendable and stretchable MEMS devices have been successfully demonstrated.This article reviews recent progress in this area,focusing on high-performance flexible devices based on inorganic thin films.We start with the common design and fabrication strategies for flexibility and stretchability,summarize the recent application-oriented flexible devices,and conclude with criteria and opportunities for the future development of flexible MEMS sensors.
基金supports from the National Natural Science Foundation of China(61801525)the independent fund of the State Key Laboratory of Optoelectronic Materials and Technologies(Sun Yat-sen University)under grant No.OEMT-2022-ZRC-05+3 种基金the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(Grant No.sklpme2023-3-5))the Foundation of the state key Laboratory of Transducer Technology(No.SKT2301),Shenzhen Science and Technology Program(JCYJ20220530161809020&JCYJ20220818100415033)the Young Top Talent of Fujian Young Eagle Program of Fujian Province and Natural Science Foundation of Fujian Province(2023J02013)National Key R&D Program of China(2022YFB2802051).
文摘Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low rescue efficiency.The multimodal electronic skin(e-skin)proposed not only reproduces the pressure,temperature,and humidity sensing capabilities of natural skin but also develops sensing functions beyond it—perceiving object proximity and NO2 gas.Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin.Rescue robots integrated with multimodal e-skin and artificial intelligence(AI)algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping,laying the foundation for automated post-earthquake rescue.Besides,the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time,thereby adopting appropriate measures to protect trapped people from the toxic environment.Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities,which,as an interface for interaction with the physical world,dramatically expands intelligent robots’application scenarios.
基金J.W.acknowledges financial supports from the National Natural Science Foundation of China(61801525)the Guangdong Basic and Applied Basic Research Foundation(2020A1515010693)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(22lgqb17).
文摘Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors.However,traditional humidity sensors suffer from a trade-off between deformability,sensitivity,and transparency,and thus the development of high-performance,stretchable,and low-cost humidity sensors is urgently needed as wearable electronics.Here,ultrasensitive,highly deformable,and transparent humidity sensors are fabricated based on cost-effective polyacrylamide-based double network hydrogels.Concomitantly,a general method for preparing hydrogel films with controllable thickness is proposed to boost the sensitivity of hydrogel-based sensors due to the extensively increased specific surface area,which can be applied to different polymer networks and facilitate the development of flexible integrated electronics.In addition,sustainable tapioca rich in hydrophilic polar groups is introduced for the first time as a second cross-linked network,exhibiting excellent water adsorption capacity.Through the synergistic optimization of structure and composition,the obtained hydrogel film exhibits an ultrahigh sensitivity of 13,462.1%/%RH,which is unprecedented.Moreover,the hydrogel film-based sensor exhibits excellent repeatability and the ability to work normally under stretching with even enhanced sensitivity.As a proof of concept,we integrate the stretchable sensor with a specially designed wireless circuit and mask to fabricate a wireless respiratory interruption detection system with Bluetooth transmission,enabling real-time monitoring of human health status.This work provides a general strategy to construct high-performance,stretchable,and miniaturized hydrogel-based sensors as next-generation wearable devices for real-time monitoring of various physiological signals.
基金financial support from the National Natural Science Foundation of China (No. 61801525)the Guangdong Basic and Applied Basic Research Foundation (Nos. 2020A1515010693, 2021A1515110269)+1 种基金the Fundamental Research Funds for the Central Universities, Sun Yatsen University (No. 22lgqb17)the Independent Fund of the State Key Laboratory of Optoelectronic Materials and Technologies (Sun Yat-sen University) under grant No. OEMT-2022-ZRC-05。
文摘Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome general check-ups. The wearable technique provides a continuous measurement method for health monitoring by tracking a person's physiological data and analyzing it locally or remotely.During the health monitoring process,different kinds of sensors convert physiological signals into electrical or optical signals that can be recorded and transmitted, consequently playing a crucial role in wearable techniques. Wearable application scenarios usually require sensors to possess excellent flexibility and stretchability. Thus, designing flexible and stretchable sensors with reliable performance is the key to wearable technology. Smart composite hydrogels, which have tunable electrical properties, mechanical properties, biocompatibility, and multi-stimulus sensitivity, are one of the best sensitive materials for wearable health monitoring. This review summarizes the common synthetic and performance optimization strategies of smart composite hydrogels and focuses on the current application of smart composite hydrogels in the field of wearable health monitoring.
基金supported by the National Natural Science Foundation of China(Grant Nos.51972032,51937007,and 51921005)Science and Technology Program of the State Grid Corporation of China(5500-201999527A-0-0-00)+1 种基金Science and Technology Program of Shenzhen Science and Technology Innovation Commission(Grant No.JCYJ20180306173235924)BUPT Excellent Ph.D.Students Foundation(CX2021128).
文摘Large deformability and high sensitivity is difficult to be realized simultaneously in flexible sensors.Herein,taking advantage of the high permittivity and highly active surfaces of the ultrasmall barium titanate nanoparticles(BT NPs)and the high stretchability of the p(BA-GMA)elastomer matrix,we propose a high-performance soft stretchable sensor.The addition of the ultrasmall BT NPs can not only increase the permittivity and capacitance of polyacrylate-matrix composite dielectric material to obtain a high sensitivity,but also basically maintains the excellent mechanical properties of the polymer matrix.The dielectric constants of the composite films increase from 5.68 to 13.13 at 10 kHz with the increase of BT NPs content from 0 to 15 vol.%,which results in a high capacitance of 236.16 pF for 15 vol.%BT/p(BA-GMA)sensor.Combining the high permittivity and the large deformability(a maximal deformation of 87.2%),the 15 vol.%BT/p(BA-GMA)sensor has high sensitivity and shows high linearity and stable output even if under dynamic measurement.The dual-mode sensor that utilizes the orthogonality of capacitance-resistance is designed,which shows excellent performance in monitoring human body movements and noncontact measurement.The results present that the BT/p(BA-GMA)-based sensor has high stability and reliability not exceed 65C,which can meet the application requirements in dynamic monitoring.
基金This work was supported by National Natural Science Foundation of China(Grant No.52075422)Rapid Manufacturing Engineering Technology Research Center of Shaanxi Province of China(Grant No.2017HBGC-06)Youth Innovation Team of Shaanxi Universities,and K.C.Wong Education Foundation.
文摘Stretchable strain sensors play a key role in motion detection and human-machine interface functionality,and deformation control.However,their sensitivity is often limited by the Poisson effect of elastic substrates.In this study,a stretchable strain sensor based on a continuous-fiber-reinforced auxetic structure was proposed and fabricated using a direct ink writing(DIW)3D printing process.The application of multi-material DIW greatly simplifies the fabrication process of a sensor with an auxetic structure(auxetic sensor).The auxiliary auxetic struc-ture was innovatively printed using a continuous-fiber-reinforced polydimethylsiloxane composite(Fiber-PDMS)to balance the rigidity and flexibility of the composite.The increase in stiffness enhances the negative Poisson’s ratio effect of the auxetic structure,which can support the carbon nanotube-polydimethylsiloxane composite(CNT-PDMS)stretchable sensor to produce a significant lateral expansion when stretched.It is shown that the structural Poisson’s ratio of the sensor decreased from 0.42 to−0.33 at 20%tensile strain,and the bidirectional tensile strain increases the sensor sensitivity by 2.52 times(gage factor to 18.23).The Fiber-PDMS composite maintains the excellent flexibility of the matrix material.The auxetic sensor exhibited no structural damage af-ter 150 cycles of tension and the signal output exhibited high stability.In addition,this study demonstrates the significant potential of auxetic sensors in the field of deformation control.
基金The authors greatly acknowledge the financial support from the National Natural Science Foundation of China(No.51873126)the Fundamental Research Funds for the Central Universities,as well as the funding from the Science&Technology Department(No.2021YFH0123)of Sichuan Province.
文摘Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensitivity at low strain is generally insufficient for practical application.Herein,we report an easy and effective way to improve the resistive response to low strain for CECs with segregated network structure via adding stiff alumina into carbon nanostructures(CNS).The CEC containing 0.7 wt%CNS and 5 wt%Al_(2)O_(3) almost sustains the same elasticity(elongation at break of~900%)and conductivity(0.8 S/m)as the control,while the piezoresistive sensitivity is significantly improved.Thermoplastic polyurethane(TPU)composites with a segregated network of hybrid nanofillers(CNS and Al_(2)O_(3))show much higher strain sensitivity(Gauge factor,GF-566)at low strain(45%strain)due to a local stress concentration effect,this sensitivity is superior to that of TPU/CNS composites(GF-11).Such a local stress concentration effect depends on alumina content and its distribution at the TPU particle interface.In addition,CECs with hybrid fillers show better reproducibility in cyclic piezoresistive behavior testing than the control.This work offers an easy method for fabricating CECs with a segregated filler network offering stretchable strain sensors with a high strain sensitivity.
基金This research was financially supported by the National Natural Science Foundation of China(Nos.51673214 and 61804185)the National Key Research and Development Program of China(No.2017YFA0206600)+1 种基金the Natural Science Foundation of Hunan Province(No.2019JJ50804)the Free Exploration and Innovation Project of Central South University(No.2019zzts427).
文摘Flexible strain sensors exhibit outstanding advantages in terms of sensitivity and stability by detecting changes in physical signals.It can be easily attached to human skin and clothed to achieve monitoring of human motion and health.However,general sensing material shows low stretchability and cannot respond to signals under large deformation.In this work,a highly stretchable polymer composite was developed by adding small amount(0.17 wt.%)of silver nanowires(AgNWs)in stretchable conductive polymer materials.The conductivity of polymer/AgNWs composite is 1.3 S/m with the stretchability up to 500%.The stretchable strain sensor based on the polymer/AgNWs composite can respond to strain signals in real time,even for 1%strain response,and shows excellent stability over 1,000 loading/unloading cycles.Moreover,the strain sensor can be attached to human skin and clothed to monitor joints,throat and pulse of the human body.The human body electrocardiogram(ECG)signal was detected successfully with the polymer/AgNWs electrode,which is comparable to the signal obtained by the commercial electrode.Overall,the sensors enable monitoring of human movement and health.These advantages make it a potential application in wearable devices and electronic skin.
基金Project supported by the National Basic Research Program of China(No.2015CB351905)the National Natural Science Foundation of China(No.61306015)+1 种基金the Technology Innovative Research Team of Sichuan Province of China(No.2015TD0005)"111"Project(No.B13042)
文摘Carbon nanotubes have potential applications in flexible and stretchable devices due to their remarkable electromechanical properties.Flexible and stretchable strain sensors of multi-walled carbon nanotubes(MWCNTs)with aligned or random structures were fabricated on poly-dimethylsiloxane(PDMS) substrate with different techniques.It was observed that the spraycoatedtechniquebased strain sensor fabricated on PDMS substrate showed higher sensitivity higher stretchability,better linearity and excellent longer time stability than the sensor fabricated with other methods presented in this work.The scanning electron microscopy images indicated the spray coating technique can produce a better uniform and compact CNT network,which is the important role affecting the performance of CNT-based flexible strain sensors.
基金This work was supported by the National Key Research and Development Program of China[NO.2020YFB1312900]the Science,Technology and Innovation Commission of Shenzhen Municipality[ZDSYS20200811143601004]+1 种基金the Agency for Science,Technology and Research(A*STAR,Singapore)AME Programmatic Funding Scheme[A18A1b0045]the SUTD Digital Manufacturing and Design Center(DManD).
文摘Stretchable strain sensor detects a wide range of strain variation and is therefore a key component in various applications.Unlike traditional ones made of elastomers doped with conductive components or fabricated with liquid conductors,ionically conductive hydrogel-based strain sensors remain conductive under large deformations and are biocompatible.However,dehydration is a challenging issue for the latter.Researchers have developed hydrogel-elastomer-based strain sensors where an elastomer matrix encapsulates a hydrogel circuit to prevent its dehydration.However,the reported multistep approaches are generally time-consuming.Our group recently reported a multimaterial 3D printing approach that enables fast fabrication of such sensors,yet requires a self-built digital-light-processing-based multimaterial 3D printer.Here,we report a simple projection lithography method to fabricate hydrogel-elastomer-based stretchable strain sensors within 5 minutes.This method only requires a UV projector/lamp with photomasks;the chemicals are commercially available;the protocols for preparing the polymer precursors are friendly to users without chemistry background.Moreover,the manufacturing flexibility allows users to readily pattern the sensor circuit and attach the sensor to a 3D printed soft pneumatic actuator to enable strain sensing on the latter.The proposed approach paves a simple and versatile way to fabricate hydrogel-elastomer-based stretchable strain sensors and flexible electronic devices.
基金the financial support from the National Key Research and Development Program of China (2023YFB3608904)the National Natural Science Foundation of China (21835003)+4 种基金the Natural Science Research Start-Up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (NY222103)the Natural Science Foundation of Jiangsu Province (BE2019120)the Foundation of Key Laboratory of Flexible Electronics of Zhejiang Province (2023FE002)the Program for Jiangsu Specially-Appointed Professor (RK030STP15001)the Leading Talent of Technological Innovation of National Ten-Thousands Talents Program of China
基金financial supports from the National Natural Science Foundation of China (61801525)the Independent Fund of the State Key Laboratory of Optoelectronic Materials and Technologies (Sun Yat-sen University,OEMT-2022-ZRC-05)+5 种基金the Opening Project of the State Key Laboratory of Polymer Materials Engineering (Sichuan University,sklpme2023-3-5)Shenzhen Science and Technology Program (JCYJ20220530161809020&JCYJ20220818100415033)the Foundation of the State Key Laboratory of Transducer Technology (SKT2301)the Young Top Talent of Fujian Young Eagle Program of Fujian Provincethe Natural Science Foundation of Fujian Province (2023J02013)the National Key R&D Program of China (2022YFB2802051)。
基金This work was supported by the National Natural Science Foundation of China[12072030].
文摘Ascribed to its wide sensing range,high sensitivity,and low stiff-ness to match target objects with complex 3D shapes,the stretch-able strain sensor has shown its promising applications in various fields,ranging from healthcare,bodynet,and intelligent traffic system,to the robotic system.This paper presents a low-cost and straightforward fabrication technology for the stretchable strain fiber with the combined attributes of a wide sensing range,excep-tional linearity,and high durability.The hybrid composite consist-ing of carbon black and silicone is utilized as the functional material to respond to the external mechanical deformation due to the piezoresistive effect.To address the remarkable hysteresis of the CB-silicone composites,the latex tubes with excellent mechanical robustness and a considerable accessible tensile strain are intro-duced as the outer supporting components.After injecting the conductive CB-silicone composite into these tubes,the stretchable strain fibers are successfully prepared.Notably,the stretchable strain sensor exhibits linearity(R^(2)=0.9854)in a wide sensing range(0-400%)and remarkable durability even after the 2500 cycles under 100%tension.Additionally,the potential of this stretchable strain fiber as the wearable strain sensor and the realtime feedback is demonstrated by detecting the body motion and the expansion devices.