In order to study the stability of friction and contact of the rotating tribological pair system,considering the influence of the changeable factors on the stability,the system dynamics analysis model based on the Lag...In order to study the stability of friction and contact of the rotating tribological pair system,considering the influence of the changeable factors on the stability,the system dynamics analysis model based on the Lagrange equation is firstly established.The surface contact stiffness model is determined on the basis of the fractal theory.The model of the friction torque with velocities is created by using the Stribeck friction effect.The Lyapunov indirect method is employed to explore the eigenvalue problem of the system state equation.The effects of the applied load,the fractal dimension,the fractal scaling coefficient and the Stribeck coefficient on the system stability are investigated in detail.The numerical simulation results demonstrate that the tribological pair system is prone to causing system instability at low speed,and the system instability boundary value decreases when the Stribeck coefficient decreases.The fractal dimension and the fractal scaling coefficient impact the system stability slightly when fractal dimensions are large,and the system instability can be reduced by properly increasing the surface smoothness.Moreover,the system instability evidently increases with the increase in the applied load and the Stribeck coefficient.These achievements can provide a reference and theoretical support for the analysis of the dynamic performance of the tribological pair system.展开更多
Stribeck effect is regarded as the most important feed-axis friction characteristics. According to the relationship between friction and lubrication,a rapid technology for feed-axis lubrication condition evaluation of...Stribeck effect is regarded as the most important feed-axis friction characteristics. According to the relationship between friction and lubrication,a rapid technology for feed-axis lubrication condition evaluation of computer numerical control( CNC) machine tools based on soft sensor is proposed. To obtain its state information,the static friction force,Coulomb friction force,and viscous coefficient are used as the key parameters of the soft sensor for tread analysis. Then the various amplitude and velocity triangular wave test curve, and a precise nonlinear model identification method are presented. The results of the experiments analysis show that this method is feasible and reliable for evaluating feed-axis lubrication condition,which lays the foundation for on-line condition monitoring and reliability evaluation for feed-axis lubrication of machine tools.展开更多
A disc-pad friction system is modelled as that two moving pads act symmetrically on an annular beam with flexible boundary condition.Simulation procedure is proposed to deal with the moving interactions and calculatio...A disc-pad friction system is modelled as that two moving pads act symmetrically on an annular beam with flexible boundary condition.Simulation procedure is proposed to deal with the moving interactions and calculation is carried out by using the finite difference method,which shows that only the first-order mode vibration of the beam can be induced.Then the partial differential equation of motion of the disk is reduced to a first-order mode vibration system with time-varying stiffness.As the disk speed is decreased below the critical speeds,the relative equilibrium of the pad on the disk loses its stability and stick-slip type limit cycle vibrations are resulted in all directions′movements.Acceleration of the disk motion on the frictional instability is also investigated.The period of stick-slip vibration with large amplitude will be shortened with higher moving deceleration.展开更多
The self-excited stick-slip oscillations of oilwell drillstrings are attributed to the nonlinear interaction between the drill-bit and the rock formation.Development of more accurate models will lead to improved predi...The self-excited stick-slip oscillations of oilwell drillstrings are attributed to the nonlinear interaction between the drill-bit and the rock formation.Development of more accurate models will lead to improved predictions allowing more potential for successful suppression of the drillstring vibrations,thus reducing damage to the drilling system,prevention of expensive failures and increased output from the oilwell.In this paper,the effect of the transition from static friction to Coulomb friction on modelling of stick-slip phenomenon of oil well drill string is investigated through an analysis of the so called‘decay factor’.Based on a distributed-lumped parameter model(DLPM)of the drilling system,the governing equations of motion for the system are obtained.By using different values of decay factor(low,high and medium),the stick-slip vibrations of the drill string are validated against published data from full-scale drill strings.The results from the simulation show that lowering the decay factor increases the critical speed and thus reduces the propensity for stick slip motion.However,a reduction in the decay factor also has the effect of inducing worse stick-slip motion once the critical speed has been reached.The results indicate the wider impact of both correct modelling of the decay factor,but also the importance of correct characterisation of the mud viscosity and drill/well contact for more accurate selection of drilling parameters in the field.展开更多
基金The Science and Technology Support Program of Jiangsu Province(No.BE2014133)the Transformation Program of Scientific and Technological Achievements of Jiangsu Province(No.201701213).
文摘In order to study the stability of friction and contact of the rotating tribological pair system,considering the influence of the changeable factors on the stability,the system dynamics analysis model based on the Lagrange equation is firstly established.The surface contact stiffness model is determined on the basis of the fractal theory.The model of the friction torque with velocities is created by using the Stribeck friction effect.The Lyapunov indirect method is employed to explore the eigenvalue problem of the system state equation.The effects of the applied load,the fractal dimension,the fractal scaling coefficient and the Stribeck coefficient on the system stability are investigated in detail.The numerical simulation results demonstrate that the tribological pair system is prone to causing system instability at low speed,and the system instability boundary value decreases when the Stribeck coefficient decreases.The fractal dimension and the fractal scaling coefficient impact the system stability slightly when fractal dimensions are large,and the system instability can be reduced by properly increasing the surface smoothness.Moreover,the system instability evidently increases with the increase in the applied load and the Stribeck coefficient.These achievements can provide a reference and theoretical support for the analysis of the dynamic performance of the tribological pair system.
基金National Natural Science Foundation of China(No.51305324)
文摘Stribeck effect is regarded as the most important feed-axis friction characteristics. According to the relationship between friction and lubrication,a rapid technology for feed-axis lubrication condition evaluation of computer numerical control( CNC) machine tools based on soft sensor is proposed. To obtain its state information,the static friction force,Coulomb friction force,and viscous coefficient are used as the key parameters of the soft sensor for tread analysis. Then the various amplitude and velocity triangular wave test curve, and a precise nonlinear model identification method are presented. The results of the experiments analysis show that this method is feasible and reliable for evaluating feed-axis lubrication condition,which lays the foundation for on-line condition monitoring and reliability evaluation for feed-axis lubrication of machine tools.
基金supported by the National Natural Science Foundation of China (Nos.51575378, 11272228 and 11332008)
文摘A disc-pad friction system is modelled as that two moving pads act symmetrically on an annular beam with flexible boundary condition.Simulation procedure is proposed to deal with the moving interactions and calculation is carried out by using the finite difference method,which shows that only the first-order mode vibration of the beam can be induced.Then the partial differential equation of motion of the disk is reduced to a first-order mode vibration system with time-varying stiffness.As the disk speed is decreased below the critical speeds,the relative equilibrium of the pad on the disk loses its stability and stick-slip type limit cycle vibrations are resulted in all directions′movements.Acceleration of the disk motion on the frictional instability is also investigated.The period of stick-slip vibration with large amplitude will be shortened with higher moving deceleration.
文摘The self-excited stick-slip oscillations of oilwell drillstrings are attributed to the nonlinear interaction between the drill-bit and the rock formation.Development of more accurate models will lead to improved predictions allowing more potential for successful suppression of the drillstring vibrations,thus reducing damage to the drilling system,prevention of expensive failures and increased output from the oilwell.In this paper,the effect of the transition from static friction to Coulomb friction on modelling of stick-slip phenomenon of oil well drill string is investigated through an analysis of the so called‘decay factor’.Based on a distributed-lumped parameter model(DLPM)of the drilling system,the governing equations of motion for the system are obtained.By using different values of decay factor(low,high and medium),the stick-slip vibrations of the drill string are validated against published data from full-scale drill strings.The results from the simulation show that lowering the decay factor increases the critical speed and thus reduces the propensity for stick slip motion.However,a reduction in the decay factor also has the effect of inducing worse stick-slip motion once the critical speed has been reached.The results indicate the wider impact of both correct modelling of the decay factor,but also the importance of correct characterisation of the mud viscosity and drill/well contact for more accurate selection of drilling parameters in the field.