An integrated metallurgical model was developed for Nb steels to predict the microstructure evolution and mechanical properties during the hot-strip rolling and cooling process. On the basis of the industrial data, th...An integrated metallurgical model was developed for Nb steels to predict the microstructure evolution and mechanical properties during the hot-strip rolling and cooling process. On the basis of the industrial data, the transformation kinetics, strength, and elongation rate were evaluated for different chemical compositions and processing parameters. The yield strength and tensile strength increase with increasing Nb content or decreasing finishing temperature. The bainite distributed in finer ferrite matrix, which is produced at relatively low coiling temperatures, can greatly increase the strength of steel, especially tensile strength, thereby decreasing the yield ratio. A reasonable agreement was found between the predicted and measured results. It indicates that the present models can be used to simulate the actual production process.展开更多
The recrystallization kinetics and grain size models were developed for the C Mn and niobium containing steels to describe the metallurgical phenomenon such as softening, grain growth, and strain accumulation. Based o...The recrystallization kinetics and grain size models were developed for the C Mn and niobium containing steels to describe the metallurgical phenomenon such as softening, grain growth, and strain accumulation. Based on the recrystallization kinetics equations, the mean flow stress and the rolling load of each pass were predicted and the optimum rolling schedule was proposed for hot strip rolling. The austenite grain refinement is associated with the addition of niobium, the decrease of starting temperature of finish rolling, and the reduction of finished thickness. The mean flow stress curve with a continuous rising characteristic can be usually observed in the finish rolling of niobium containing steel, which is formed as a result of the heavy incomplete softening and strain accumulation. The predic ted rolling loads are in good agreement with the measured ones.展开更多
基金This study was financially supported by the National Natural Science Foundation of China (No.50504007, No.50474086, and No.50334010).
文摘An integrated metallurgical model was developed for Nb steels to predict the microstructure evolution and mechanical properties during the hot-strip rolling and cooling process. On the basis of the industrial data, the transformation kinetics, strength, and elongation rate were evaluated for different chemical compositions and processing parameters. The yield strength and tensile strength increase with increasing Nb content or decreasing finishing temperature. The bainite distributed in finer ferrite matrix, which is produced at relatively low coiling temperatures, can greatly increase the strength of steel, especially tensile strength, thereby decreasing the yield ratio. A reasonable agreement was found between the predicted and measured results. It indicates that the present models can be used to simulate the actual production process.
基金Item Sponsored by National Natural Science Foundation of China (50504007 ,50474086 ,50334010)
文摘The recrystallization kinetics and grain size models were developed for the C Mn and niobium containing steels to describe the metallurgical phenomenon such as softening, grain growth, and strain accumulation. Based on the recrystallization kinetics equations, the mean flow stress and the rolling load of each pass were predicted and the optimum rolling schedule was proposed for hot strip rolling. The austenite grain refinement is associated with the addition of niobium, the decrease of starting temperature of finish rolling, and the reduction of finished thickness. The mean flow stress curve with a continuous rising characteristic can be usually observed in the finish rolling of niobium containing steel, which is formed as a result of the heavy incomplete softening and strain accumulation. The predic ted rolling loads are in good agreement with the measured ones.