Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of nob...Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed.展开更多
Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-gr...Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.展开更多
Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redo...Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability.展开更多
We propose the new field potential by maintaining both the symmetry of the scalar gauge and the conservation law keeping N?ether’s theorem, while disregarding the symmetry of the vector gauge. The new potential forms...We propose the new field potential by maintaining both the symmetry of the scalar gauge and the conservation law keeping N?ether’s theorem, while disregarding the symmetry of the vector gauge. The new potential forms like the well-type potential where a particle behaves almost freely but is very hard to escape without external energy, which can be interpreted as local confinement and asymptotic freedom. By assuming a 2-dimensional metric tensor in 4-dimensional space-time, we suggest the existence of 3 kinds of particles that resemble QCD with 3 color charges. We also show that the mass term exists but comes to zero and derive the charge and spin values. We can regard the particle with this new potential as a gluon, and the interaction in this well-type potential as a strong interaction for the properties of mass, charge, spin, and its behavior. We suggest the eight-fold way with this new particle, which is similar to the existing method based on SU (3) symmetry. Even though the strong interaction has been analyzed in the standard model and string theory, we build a new consistent model based on the theory of relativity including Riemann geometry, and show the unification of gravitational and strong interactional field.展开更多
Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S...Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S_(4) heterostructures with strong hetero-interface interaction and abundant contact were constructed via an impregnation-annealing strategy.Efficient charge transfer from ZnIn_(2)S_(4) to WSe_(2)was evidenced by transient absorption spectroscopy in crafted heterostructures owing to the tight and2D face-to-face contact.As a result,the prepared WSe_(2)/ZnIn_(2)S_(4) heterostructures exhibited boosted photocatalytic performance and a highest hydrogen evolution rate of 3.377 mmol/(g h)was achieved with an apparent quantum yield of 45.7%at 420 nm.The work not only provides new strategies to achieve efficient 2D/2D heterostructures but also paves the way for the development of green hydrogen in the future.展开更多
High-efficiency electrochemical hydrogen evolution reaction(HER)offers a promising strategy to address energy and environmental crisis.Platinum is the most effective electrocatalyst for the HER.However,challenging sca...High-efficiency electrochemical hydrogen evolution reaction(HER)offers a promising strategy to address energy and environmental crisis.Platinum is the most effective electrocatalyst for the HER.However,challenging scarcity,valuableness,and poor electrochemical stability still hinder its wide application.Here,we designed an outstanding HER electrocatalyst,highly dispersed rhodium(Rh)nanoparticles with an average diameter of only 3 nm supported on boron(B)nanosheets.The HER catalytic activity is even comparable to that of commercial platinum catalysts,with an overpotential of only 66 mV in 0.5 M H_(2)SO_(4) and 101 mV in 1 M KOH to reach the current density of 10 mA cm−2.Meanwhile,the catalyst exhibited impressive electrochemical durability during long-term electrochemical processes in acidic and alkaline media,even the simu-lated seawater environment.Theoretical calculations unraveled that the structure-activity relationship between B(104)crystal plane and Rh(111)crystal plane is beneficial to the release of hydrogen,and surface O plays a vital role in the catalysis process.Our work may gain insights into the development of supported metal catalysts with robust catalytic performance through precise engineering of the strong metal-supported interaction effect.展开更多
The development of high-sulfur-loading Li-S batteries is a key prerequisite for their commercial applications.This requires to surmount the huge polarization,severe polysulfide shuttling and drastic volume change caus...The development of high-sulfur-loading Li-S batteries is a key prerequisite for their commercial applications.This requires to surmount the huge polarization,severe polysulfide shuttling and drastic volume change caused by electrode thickening.High-strength polar binders are ideal for constructing robust and long-life high-loading sulfur cathodes but show very weak interfacial interaction with non-polar sulfur materials.To address this issue,this work devises a highly integrated sulfur@polydopamine/highstrength binder composite cathodes,targeting long-lasting and high-sulfur-loading Li-S batteries.The super-adhesion polydopamine(PD)can form a uniform nano-coating over the graphene/sulfur(G-S)surface and provide strong affinity to the cross-linked polyacrylamide(c-PAM)binder,thus tightly integrating sulfur with the binder network and greatly boosting the overall mechanical strength/conductivity of the electrode.Moreover,the PD coating and c-PAM binder rich in polar groups can form two effective blockades against the effusion of soluble polysulfides.As such,the 4.5 mg cm−2 sulfur-loaded G-S@PD-c-PAM cathode achieves a capacity of 480 mAh g−1 after 300 cycles at 1 C,while maintaining a capacity of 396 mAh g−1 after 50 cycles at 0.2 C when the sulfur loading rises to 9.1 mg cm−2.This work provides a system-wide concept for constructing high-loading sulfur cathodes through integrated structural design.展开更多
Gold catalysts have been reported as highly effective catalysts in various oxidation reactions.However,for chemoselective hydrogenation reactions,gold‐based catalysts normally show much lowercatalytic activity than p...Gold catalysts have been reported as highly effective catalysts in various oxidation reactions.However,for chemoselective hydrogenation reactions,gold‐based catalysts normally show much lowercatalytic activity than platinum group metals,even though their selectivities are excellent.Here,wereport that the chemoselective hydrogenation activity of 3‐nitrostyrene to 3‐vinylaniline overAu/TiO_(2)can be enhanced up to 3.3 times through the hydrogen reduction strategy.It is revealedthat strong metal‐support interaction,between gold nanoparticles(NPs)and TiO_(2)support,is introducedthrough hydrogen reduction,resulting in partial dispersion of reduced TiOx on the Au surface.The partially covered Au not only increases the perimeter of the interface between the gold NPs andthe support,but also benefits H_(2)activation.Reaction kinetic analysis and H_(2)‐D2 exchange reactionshow that H_(2)activation is the critical step in the hydrogenation of 3‐nitrostyrene to 3‐vinylaniline.Density functional theory calculations verify that hydrogen dissociation and hydrogen transfer arefavored at the interface of gold NPs and TiO_(2)over the hydrogen‐reduced Au/TiO_(2).This study providesinsights for fabricating highly active gold‐based catalysts for chemoselective hydrogenationreactions.展开更多
It is shown that the gauge boson mass is natu-rally generated–without Higgs–in the pion beta decay using the scalar strong interaction had-ron theory. This mass generation is made pos-sible by the presence of relati...It is shown that the gauge boson mass is natu-rally generated–without Higgs–in the pion beta decay using the scalar strong interaction had-ron theory. This mass generation is made pos-sible by the presence of relative time between quarks in the pion in a fully Lorentz covariant formalism.展开更多
We have measured the cross-section ratios of helium induced by Cq+ and Oq+ (q = 1-4) in an energy range from 20 keV/amu to 500 keV/amu, and obtained the two-dimensional spectra by employing the coincidence method ...We have measured the cross-section ratios of helium induced by Cq+ and Oq+ (q = 1-4) in an energy range from 20 keV/amu to 500 keV/amu, and obtained the two-dimensional spectra by employing the coincidence method combined with the MPA-3 data acquisition system. Hence, we obtain the ratios of total single-ionization cross-sections (SI, SC, SLSI, and DLSI), total double-ionization cross-sections (DI, DC, TI, SLDI, and DLDI) and cross-sections of every process (SI, SC, SLSI, DLSI, DI, DC, TI, SLDI, and DLDI), which induce the single-ionization and double-ionization, to the total cross sections respectively. The competitive relations between the reaction-channels and the experimental data law of each reaction-channel are revealed explicitly, and the qualitative explanations involved in those results are also presented accordingly.展开更多
In this paper, by using the Lagrangian coordinates, the strongly oblique interactions between solitary waves with the same mode in a stratified fluid ape discussed, which includes the shallow fluid case and deep fluid...In this paper, by using the Lagrangian coordinates, the strongly oblique interactions between solitary waves with the same mode in a stratified fluid ape discussed, which includes the shallow fluid case and deep fluid case. It is found that the interactions are described by the KP equation for the shallow fluid case, the two-dimensional intermediate long wave equation (2D-ILW equation) for the deep fluid case and the two-dimensional BO equation (2D-BO equation) for the infinite deep fluid case.展开更多
Meson spectra have been treated earlier in the scalar strong interaction hadron theory, choosing the Coulomb and linear type of potentials, neglecting the quadratic one. The spectra of ground state pseudoscalar and ve...Meson spectra have been treated earlier in the scalar strong interaction hadron theory, choosing the Coulomb and linear type of potentials, neglecting the quadratic one. The spectra of ground state pseudoscalar and vector mesons were adequately accounted for but not that of the excited mesons. Here, the quadratic potential replaces the Coulomb one and the same ground state meson spectra were recovered. Also, the masses of low-lying radially excited pseudoscalar and vector mesons were found to be 4% - 18% smaller than the measured ones. Here, the linear type of potential, by itself of nonlinear nature, has been neglected. For some orbitally excited pseudoscalar mesons, the difference is 14% - 38%. The discrepancies are tentatively attributed to the neglected nonlinear potential, which is expected to increase with meson mass, as can be seen in the tables below.展开更多
From the equations of motion for baryons in the scalar strong interaction hadron theory (SSI), two coupled third order radial wave equations for baryon doublets have been derived and published in 1994. These equations...From the equations of motion for baryons in the scalar strong interaction hadron theory (SSI), two coupled third order radial wave equations for baryon doublets have been derived and published in 1994. These equations are solved numerically here, using quark masses obtained from meson spectra and the masses of the neutron, ?0 and ?0 as input. Confined wave functions dependent upon the quark-diquark distance as well as the values of the four integration constants entering the quark-diquark interaction potential are found approximately. These approximative, zeroth order results are employed in a first order perturbational treatment of the equations of motion for baryons in SSI for free neutron decay. The predicted magnitude of neutron’s half life agrees with data. If the only free parameter is adjusted to produce the known A asymmetry coefficient, the predicted B asymmetry agrees well with data and vice versa. It is pointed out that angular momentum is not conserved in free neutron decay and that the weak coupling constant is detached from the much stronger fine structure constant of electromagnetic coupling.展开更多
Electromagnetically induced transparency (EIT) is investigated in a system of cold, interacting cesium Rydberg atoms. The utilized cesium levels 6S1/2, 6P3/2 and nD5/2 constitute a cascade three-level system, in whi...Electromagnetically induced transparency (EIT) is investigated in a system of cold, interacting cesium Rydberg atoms. The utilized cesium levels 6S1/2, 6P3/2 and nD5/2 constitute a cascade three-level system, in which a coupling laser drives the Rydberg transition, and a probe laser detects the EIT signal on the 6S1/2 to 6/23/2 transition. Rydberg EIT spectra are found to depend on the strong interaction between the Rydberg atoms. Diminished EIT transparency is obtained when the Rabi frequency of the probe laser is increased, whereas the corresponding linewidth remains unchanged. To model the system with a three-level Linclblad equation, we introduce a Rydberg-level dephasing rate γ3 = κ×(P33/Ωp)^2, with a value κ that depends on the ground-state atom density and the Rydberg level, The simulation results are largely consistent with the measurements. The experiments, in which the principal quantum number is varied between 30 and 43, demonstrate that the EIT reduction observed at large Ωp is due to the strong interactions between the Rydberg atoms.展开更多
In this paper, by using harmonic-oscillator wave functions of different interaction models, i.e. OPE (onepion-exchange model), OPsE (only pseudoscalar meson exchange model), the extended GBE (Goldstone-boson-exchange ...In this paper, by using harmonic-oscillator wave functions of different interaction models, i.e. OPE (onepion-exchange model), OPsE (only pseudoscalar meson exchange model), the extended GBE (Goldstone-boson-exchange model including vector and scalar mesons), and OGE (one-gluon-exchange model), we calculate and compare the strong decays of negative parity N* resonances under 2 GeV. We find that the conventional mixing angles are correct, and GBE and OGE are obviously superior to OPE and OPsE.展开更多
Dry reforming of ethane(DRE)has received significant attention because of its potential to produce chemical raw materials and reduce carbon emissions.Herein,a composition-induced strong metal-support interaction(SMSI)...Dry reforming of ethane(DRE)has received significant attention because of its potential to produce chemical raw materials and reduce carbon emissions.Herein,a composition-induced strong metal-support interaction(SMSI)effect over FeNi/Al-Ce-O catalysts is revealed via X-ray photoelectron spectroscopy(XPS),H_(2)-temperature programmed reduction(TPR),and energy dispersive X-ray spectroscopy(EDS)elemental mapping.The introduction of Al into Al-Ce-O supports significantly influences the dispersion of surface active components and improves the catalytic performance for DRE over supported FeNi catalysts due to enhancement of the SMSI effect.The catalytic properties,for example,C_(2)H_(6) and CO_(2) conversion,CO selectivity and yield,and turnover frequencies(TOFs),of supported FeNi catalysts first increase and then decrease with increasing Al content,following the same trend as the theoretical effective surface area(TESA)of the corresponding catalysts.The FeNi/Ce-Al_(0.5) catalyst,with 50%Al content,exhibits the best DRE performance under steady-state conditions at 873 K.As observed by with in situ Fourier transform infrared spectroscopy(FTIR)analysis,the introduction of Al not only increases the content of surface Ce3+and oxygen vacancies but also promotes the dispersion of surface active components,which further alters the catalytic properties for DRE over supported FeNi catalysts.展开更多
This paper is an extension of the book of reference [1] below. QCD Lagrangian is derived from the same equations of motion for quarks used to construct the equations of motion for mesons and baryons in the scalar stro...This paper is an extension of the book of reference [1] below. QCD Lagrangian is derived from the same equations of motion for quarks used to construct the equations of motion for mesons and baryons in the scalar strong interaction hadron theory that accounts for many basic low energy data not covered by QCD. At high energies, the energetic quarks in a hadron can be far from each other and approximately free. Each quark is associated with a vector in an internal space characterizing its mass and charge. These spaces are interchangeable and provide a new symmetry equivalent to color symmetry in QCD. A quark in a meson has two “colors” and in a baryon three “colors”;the β function of QCD is 61%-92% greater in high energy interactions leading to baryons than that to mesons. This function enters the measurable running coupling constant and this prediction is testable against experiment. QCD, successful at high energies, is thus reconciled with the scalar strong interaction hadron theory and both complement each other.展开更多
Radiative decay of heavy ground state vector meson V → Pγis treated semi-classically in the scalar strong interaction hadron theory. The treatment successfully employs the new wave function of the vector me...Radiative decay of heavy ground state vector meson V → Pγis treated semi-classically in the scalar strong interaction hadron theory. The treatment successfully employs the new wave function of the vector meson updated here. The ratio of the available J/ψ and decay rates agrees with prediction. The values of the predicted rates are also in order of magnitude agreement with measurements. These agreements are the only ones directly computed from a first principles’ theory.展开更多
CP conservation and violation in neutral kaon decay are considered from a first principles’ theory, recently published as “Scalar Strong Interaction Hadron Theory”. The arbitrary phase angle relating K0 and 0 in cu...CP conservation and violation in neutral kaon decay are considered from a first principles’ theory, recently published as “Scalar Strong Interaction Hadron Theory”. The arbitrary phase angle relating K0 and 0 in current phenomenology is identified to be related to the product of the relative energy to the relative time between the s and d quarks in these kaons. The argument of the CP violating parameter ? is predicted to be 45? without employing measured data. The K0S decay rate is twice the K0L -K0S masss difference, in near agreement with data, and both are proportional to the square of the relative energy 29.44 eV. Any pion from K0L decay will also have a mass shift of ≈1.28 × 10-5 eV. The present first principles’ theory is consistent with CP conservation. To achieve CP violation, the relative time cannot extend to both +∞ and -∞ but is bounded in at least one direction. The values of these bounds lie outside the present theory and it is unknown how they can be brought forth. -B0 mixing is also considered and the relative energy is 663.66 eV.展开更多
The strong force effect on gluon distribution of quark-gluon plasma and its influence on jet energy loss with detailed balance are studied. We solve the possibility equation and obtain the value of non-extensive param...The strong force effect on gluon distribution of quark-gluon plasma and its influence on jet energy loss with detailed balance are studied. We solve the possibility equation and obtain the value of non-extensive parameter q. In the presence of strong interaction, more gluons stay at low-energy state than the free gluon case. The strong interaction effect is found to be important for jet energy loss with detailed balance at intermediate jet energy. The energy gain via absorption increases with the strong interaction. This will affect the nuclear modification factor RAA and the parameter of q at intermediate jet energy.展开更多
基金the National Natural Science Foundation of China(21576291,22003076)National Natural Science Foundation of China-Outstanding Youth foundation(22322814)the Fundamental Research Funds for the Central Universities(23CX03007A,22CX06012A)are gratefully acknowledge。
文摘Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.22075159,22002066)Shandong Taishan Scholars Project(Grant Nos.ts20190932,tsqn202103058)+1 种基金Open Fund of Hubei Key Laboratory of Processing and Application of Catalytic Materials(Grant No.202203404)Postdoctoral Applied Research Project in Qingdao,and the Youth Innovation Team Project of Shandong Provincial Education Department(Grant No.2019KJC023).
文摘Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021B1515120072)the Natural Science Foundation of China(22279096 and T2241003)the Fundamental Research Funds for the Central Universities(WUT:2023IVA094).
文摘Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability.
文摘We propose the new field potential by maintaining both the symmetry of the scalar gauge and the conservation law keeping N?ether’s theorem, while disregarding the symmetry of the vector gauge. The new potential forms like the well-type potential where a particle behaves almost freely but is very hard to escape without external energy, which can be interpreted as local confinement and asymptotic freedom. By assuming a 2-dimensional metric tensor in 4-dimensional space-time, we suggest the existence of 3 kinds of particles that resemble QCD with 3 color charges. We also show that the mass term exists but comes to zero and derive the charge and spin values. We can regard the particle with this new potential as a gluon, and the interaction in this well-type potential as a strong interaction for the properties of mass, charge, spin, and its behavior. We suggest the eight-fold way with this new particle, which is similar to the existing method based on SU (3) symmetry. Even though the strong interaction has been analyzed in the standard model and string theory, we build a new consistent model based on the theory of relativity including Riemann geometry, and show the unification of gravitational and strong interactional field.
基金financially supported by the National Natural Science Foundation of China (No.52106259)the Fundamental Research Funds for the Central Universities (2024MS013)Key Research and Development Program of Shaanxi (Program No.2022LL-JB-08)。
文摘Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S_(4) heterostructures with strong hetero-interface interaction and abundant contact were constructed via an impregnation-annealing strategy.Efficient charge transfer from ZnIn_(2)S_(4) to WSe_(2)was evidenced by transient absorption spectroscopy in crafted heterostructures owing to the tight and2D face-to-face contact.As a result,the prepared WSe_(2)/ZnIn_(2)S_(4) heterostructures exhibited boosted photocatalytic performance and a highest hydrogen evolution rate of 3.377 mmol/(g h)was achieved with an apparent quantum yield of 45.7%at 420 nm.The work not only provides new strategies to achieve efficient 2D/2D heterostructures but also paves the way for the development of green hydrogen in the future.
基金project was funded by National Natural Science Foundation of China(Nos.21901154,21671129)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT17R71)。
文摘High-efficiency electrochemical hydrogen evolution reaction(HER)offers a promising strategy to address energy and environmental crisis.Platinum is the most effective electrocatalyst for the HER.However,challenging scarcity,valuableness,and poor electrochemical stability still hinder its wide application.Here,we designed an outstanding HER electrocatalyst,highly dispersed rhodium(Rh)nanoparticles with an average diameter of only 3 nm supported on boron(B)nanosheets.The HER catalytic activity is even comparable to that of commercial platinum catalysts,with an overpotential of only 66 mV in 0.5 M H_(2)SO_(4) and 101 mV in 1 M KOH to reach the current density of 10 mA cm−2.Meanwhile,the catalyst exhibited impressive electrochemical durability during long-term electrochemical processes in acidic and alkaline media,even the simu-lated seawater environment.Theoretical calculations unraveled that the structure-activity relationship between B(104)crystal plane and Rh(111)crystal plane is beneficial to the release of hydrogen,and surface O plays a vital role in the catalysis process.Our work may gain insights into the development of supported metal catalysts with robust catalytic performance through precise engineering of the strong metal-supported interaction effect.
基金supported by the National Natural Science Foundation of China(21875155,51675275,21703185 and 21473119)Q.B.Z.acknowledges the Leading Project Foundation of Science Department of Fujian Province(2018H0034)Shenzhen Science and Technology Planning Project(JCYJ20170818153427106).
文摘The development of high-sulfur-loading Li-S batteries is a key prerequisite for their commercial applications.This requires to surmount the huge polarization,severe polysulfide shuttling and drastic volume change caused by electrode thickening.High-strength polar binders are ideal for constructing robust and long-life high-loading sulfur cathodes but show very weak interfacial interaction with non-polar sulfur materials.To address this issue,this work devises a highly integrated sulfur@polydopamine/highstrength binder composite cathodes,targeting long-lasting and high-sulfur-loading Li-S batteries.The super-adhesion polydopamine(PD)can form a uniform nano-coating over the graphene/sulfur(G-S)surface and provide strong affinity to the cross-linked polyacrylamide(c-PAM)binder,thus tightly integrating sulfur with the binder network and greatly boosting the overall mechanical strength/conductivity of the electrode.Moreover,the PD coating and c-PAM binder rich in polar groups can form two effective blockades against the effusion of soluble polysulfides.As such,the 4.5 mg cm−2 sulfur-loaded G-S@PD-c-PAM cathode achieves a capacity of 480 mAh g−1 after 300 cycles at 1 C,while maintaining a capacity of 396 mAh g−1 after 50 cycles at 0.2 C when the sulfur loading rises to 9.1 mg cm−2.This work provides a system-wide concept for constructing high-loading sulfur cathodes through integrated structural design.
文摘Gold catalysts have been reported as highly effective catalysts in various oxidation reactions.However,for chemoselective hydrogenation reactions,gold‐based catalysts normally show much lowercatalytic activity than platinum group metals,even though their selectivities are excellent.Here,wereport that the chemoselective hydrogenation activity of 3‐nitrostyrene to 3‐vinylaniline overAu/TiO_(2)can be enhanced up to 3.3 times through the hydrogen reduction strategy.It is revealedthat strong metal‐support interaction,between gold nanoparticles(NPs)and TiO_(2)support,is introducedthrough hydrogen reduction,resulting in partial dispersion of reduced TiOx on the Au surface.The partially covered Au not only increases the perimeter of the interface between the gold NPs andthe support,but also benefits H_(2)activation.Reaction kinetic analysis and H_(2)‐D2 exchange reactionshow that H_(2)activation is the critical step in the hydrogenation of 3‐nitrostyrene to 3‐vinylaniline.Density functional theory calculations verify that hydrogen dissociation and hydrogen transfer arefavored at the interface of gold NPs and TiO_(2)over the hydrogen‐reduced Au/TiO_(2).This study providesinsights for fabricating highly active gold‐based catalysts for chemoselective hydrogenationreactions.
文摘It is shown that the gauge boson mass is natu-rally generated–without Higgs–in the pion beta decay using the scalar strong interaction had-ron theory. This mass generation is made pos-sible by the presence of relative time between quarks in the pion in a fully Lorentz covariant formalism.
基金Project supported by the National Natural Science Foundation of China(Grant No.10775063)
文摘We have measured the cross-section ratios of helium induced by Cq+ and Oq+ (q = 1-4) in an energy range from 20 keV/amu to 500 keV/amu, and obtained the two-dimensional spectra by employing the coincidence method combined with the MPA-3 data acquisition system. Hence, we obtain the ratios of total single-ionization cross-sections (SI, SC, SLSI, and DLSI), total double-ionization cross-sections (DI, DC, TI, SLDI, and DLDI) and cross-sections of every process (SI, SC, SLSI, DLSI, DI, DC, TI, SLDI, and DLDI), which induce the single-ionization and double-ionization, to the total cross sections respectively. The competitive relations between the reaction-channels and the experimental data law of each reaction-channel are revealed explicitly, and the qualitative explanations involved in those results are also presented accordingly.
文摘In this paper, by using the Lagrangian coordinates, the strongly oblique interactions between solitary waves with the same mode in a stratified fluid ape discussed, which includes the shallow fluid case and deep fluid case. It is found that the interactions are described by the KP equation for the shallow fluid case, the two-dimensional intermediate long wave equation (2D-ILW equation) for the deep fluid case and the two-dimensional BO equation (2D-BO equation) for the infinite deep fluid case.
文摘Meson spectra have been treated earlier in the scalar strong interaction hadron theory, choosing the Coulomb and linear type of potentials, neglecting the quadratic one. The spectra of ground state pseudoscalar and vector mesons were adequately accounted for but not that of the excited mesons. Here, the quadratic potential replaces the Coulomb one and the same ground state meson spectra were recovered. Also, the masses of low-lying radially excited pseudoscalar and vector mesons were found to be 4% - 18% smaller than the measured ones. Here, the linear type of potential, by itself of nonlinear nature, has been neglected. For some orbitally excited pseudoscalar mesons, the difference is 14% - 38%. The discrepancies are tentatively attributed to the neglected nonlinear potential, which is expected to increase with meson mass, as can be seen in the tables below.
文摘From the equations of motion for baryons in the scalar strong interaction hadron theory (SSI), two coupled third order radial wave equations for baryon doublets have been derived and published in 1994. These equations are solved numerically here, using quark masses obtained from meson spectra and the masses of the neutron, ?0 and ?0 as input. Confined wave functions dependent upon the quark-diquark distance as well as the values of the four integration constants entering the quark-diquark interaction potential are found approximately. These approximative, zeroth order results are employed in a first order perturbational treatment of the equations of motion for baryons in SSI for free neutron decay. The predicted magnitude of neutron’s half life agrees with data. If the only free parameter is adjusted to produce the known A asymmetry coefficient, the predicted B asymmetry agrees well with data and vice versa. It is pointed out that angular momentum is not conserved in free neutron decay and that the weak coupling constant is detached from the much stronger fine structure constant of electromagnetic coupling.
基金Supported by the National Basic Research Program of China under Grant No 2012CB921603Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China under Grant No IRT13076+2 种基金the State Key Program of the National Natural Science of China under Grant No 11434007the National Natural Science of China under Grant Nos 11274209,61475090,60378039 and 61378013Shanxi Scholarship Council of China(2014-009)
文摘Electromagnetically induced transparency (EIT) is investigated in a system of cold, interacting cesium Rydberg atoms. The utilized cesium levels 6S1/2, 6P3/2 and nD5/2 constitute a cascade three-level system, in which a coupling laser drives the Rydberg transition, and a probe laser detects the EIT signal on the 6S1/2 to 6/23/2 transition. Rydberg EIT spectra are found to depend on the strong interaction between the Rydberg atoms. Diminished EIT transparency is obtained when the Rabi frequency of the probe laser is increased, whereas the corresponding linewidth remains unchanged. To model the system with a three-level Linclblad equation, we introduce a Rydberg-level dephasing rate γ3 = κ×(P33/Ωp)^2, with a value κ that depends on the ground-state atom density and the Rydberg level, The simulation results are largely consistent with the measurements. The experiments, in which the principal quantum number is varied between 30 and 43, demonstrate that the EIT reduction observed at large Ωp is due to the strong interactions between the Rydberg atoms.
文摘In this paper, by using harmonic-oscillator wave functions of different interaction models, i.e. OPE (onepion-exchange model), OPsE (only pseudoscalar meson exchange model), the extended GBE (Goldstone-boson-exchange model including vector and scalar mesons), and OGE (one-gluon-exchange model), we calculate and compare the strong decays of negative parity N* resonances under 2 GeV. We find that the conventional mixing angles are correct, and GBE and OGE are obviously superior to OPE and OPsE.
基金support from the National Key Research and Development Program of China(2017YFB0702800)the China Petrochemical Corporation(Sinopec Group)the National Natural Science Foundation of China(91434102 and U1663221)。
文摘Dry reforming of ethane(DRE)has received significant attention because of its potential to produce chemical raw materials and reduce carbon emissions.Herein,a composition-induced strong metal-support interaction(SMSI)effect over FeNi/Al-Ce-O catalysts is revealed via X-ray photoelectron spectroscopy(XPS),H_(2)-temperature programmed reduction(TPR),and energy dispersive X-ray spectroscopy(EDS)elemental mapping.The introduction of Al into Al-Ce-O supports significantly influences the dispersion of surface active components and improves the catalytic performance for DRE over supported FeNi catalysts due to enhancement of the SMSI effect.The catalytic properties,for example,C_(2)H_(6) and CO_(2) conversion,CO selectivity and yield,and turnover frequencies(TOFs),of supported FeNi catalysts first increase and then decrease with increasing Al content,following the same trend as the theoretical effective surface area(TESA)of the corresponding catalysts.The FeNi/Ce-Al_(0.5) catalyst,with 50%Al content,exhibits the best DRE performance under steady-state conditions at 873 K.As observed by with in situ Fourier transform infrared spectroscopy(FTIR)analysis,the introduction of Al not only increases the content of surface Ce3+and oxygen vacancies but also promotes the dispersion of surface active components,which further alters the catalytic properties for DRE over supported FeNi catalysts.
文摘This paper is an extension of the book of reference [1] below. QCD Lagrangian is derived from the same equations of motion for quarks used to construct the equations of motion for mesons and baryons in the scalar strong interaction hadron theory that accounts for many basic low energy data not covered by QCD. At high energies, the energetic quarks in a hadron can be far from each other and approximately free. Each quark is associated with a vector in an internal space characterizing its mass and charge. These spaces are interchangeable and provide a new symmetry equivalent to color symmetry in QCD. A quark in a meson has two “colors” and in a baryon three “colors”;the β function of QCD is 61%-92% greater in high energy interactions leading to baryons than that to mesons. This function enters the measurable running coupling constant and this prediction is testable against experiment. QCD, successful at high energies, is thus reconciled with the scalar strong interaction hadron theory and both complement each other.
文摘Radiative decay of heavy ground state vector meson V → Pγis treated semi-classically in the scalar strong interaction hadron theory. The treatment successfully employs the new wave function of the vector meson updated here. The ratio of the available J/ψ and decay rates agrees with prediction. The values of the predicted rates are also in order of magnitude agreement with measurements. These agreements are the only ones directly computed from a first principles’ theory.
文摘CP conservation and violation in neutral kaon decay are considered from a first principles’ theory, recently published as “Scalar Strong Interaction Hadron Theory”. The arbitrary phase angle relating K0 and 0 in current phenomenology is identified to be related to the product of the relative energy to the relative time between the s and d quarks in these kaons. The argument of the CP violating parameter ? is predicted to be 45? without employing measured data. The K0S decay rate is twice the K0L -K0S masss difference, in near agreement with data, and both are proportional to the square of the relative energy 29.44 eV. Any pion from K0L decay will also have a mass shift of ≈1.28 × 10-5 eV. The present first principles’ theory is consistent with CP conservation. To achieve CP violation, the relative time cannot extend to both +∞ and -∞ but is bounded in at least one direction. The values of these bounds lie outside the present theory and it is unknown how they can be brought forth. -B0 mixing is also considered and the relative energy is 663.66 eV.
基金Supported by the National Natural Science Foundation of China under Grant No 11205024the Doctoral Scientific Fund Project of the Ministry of Education of China under Grant No 2012004112004
文摘The strong force effect on gluon distribution of quark-gluon plasma and its influence on jet energy loss with detailed balance are studied. We solve the possibility equation and obtain the value of non-extensive parameter q. In the presence of strong interaction, more gluons stay at low-energy state than the free gluon case. The strong interaction effect is found to be important for jet energy loss with detailed balance at intermediate jet energy. The energy gain via absorption increases with the strong interaction. This will affect the nuclear modification factor RAA and the parameter of q at intermediate jet energy.