Analytic method and identification direction for rational identification of lightning derivative disasters by strong convective weather monitoring data in southern China were introduced. Taking identification cases of...Analytic method and identification direction for rational identification of lightning derivative disasters by strong convective weather monitoring data in southern China were introduced. Taking identification cases of lightning disaster in Guangzhou Development Region as the background,according to the characteristics in the region that large high-precision enterprises were more,lightning derivative disasters occurred frequently in thunderstorm season,and the actual situation that time of the affected enterprise applying for lightning disaster scene identification lagged,combining Technical Specifications of Lightning Disaster Investigation( QX / T103-2009),qualitative analysis method of lightning derivative disaster was put forward under the weather condition of strong convection in southern China by using weather monitoring data( Doppler sounding radar data,lightning positioning monitoring data,atmospheric electric field data,rainfall data,wind direction and force),and was optimized by technical means( " metallographic method" and " remanence law"). The research could put forward efficient and convenient analytical thinking and method for lightning derivative disaster,and further optimize accuracy and credibility of lightning disaster investigation.展开更多
[Objective] The research aimed to study the meso-scale characteristics of a hail process in Linyi area. [Method] By comprehensively using MICAPS conventional observation data, automatic encryption ground station, MM5 ...[Objective] The research aimed to study the meso-scale characteristics of a hail process in Linyi area. [Method] By comprehensively using MICAPS conventional observation data, automatic encryption ground station, MM5 model product and Doppler weather radar data, a strong convective hail weather process which happened in Shandong Peninsula and southeast of Shandong on May 30, 2010 was analyzed. The circulation background and physical mechanism of strong convection weather occurrence, the features of meso- and micro-scale systems were discussed. Some occurrence and development rules of such weather were found. [Result] The strong convective weather was mainly affected by the cold vortex and translot. The high-altitude northwest airflow, low-level southwest airflow, dry and cold air at the high layer, warm and wet air at the low layer, forward-tilting trough caused the strong convective weather. The radar echo analysis showed that the radar echo in the process belonged to the typical multi-monomer windstorm echo, and the strong echo zone was in the forefront of echo. When the convection development was the strongest, the echo intensity reached 65 dBz, and the echo top height surpassed 11 km. As the development of windstorm monomer, the big-value zone of vertical liquid water content product had the jumping formation and disappearance. Moreover, there was obvious weak echo zone. The windstorm monomer moved to the southeast direction as the precipitation system. In the right front of monomer moving direction, there was hook echo feature. The evolution characteristics of radial speed field at the different elevation angles before and after the hail weather occurrence were analyzed. It was found that the radial speed field had some premonitory variations before the hail weather occurrence. Doppler radar product was used to improve the initial field of MM5 model, which could improve the forecast effect in the certain degree and the accuracy of short-time forecast and nowcasting. [Conclusion] The research accumulated the experience for the short-term forecast and nowcasting work of strong convective weather in future.展开更多
文摘Analytic method and identification direction for rational identification of lightning derivative disasters by strong convective weather monitoring data in southern China were introduced. Taking identification cases of lightning disaster in Guangzhou Development Region as the background,according to the characteristics in the region that large high-precision enterprises were more,lightning derivative disasters occurred frequently in thunderstorm season,and the actual situation that time of the affected enterprise applying for lightning disaster scene identification lagged,combining Technical Specifications of Lightning Disaster Investigation( QX / T103-2009),qualitative analysis method of lightning derivative disaster was put forward under the weather condition of strong convection in southern China by using weather monitoring data( Doppler sounding radar data,lightning positioning monitoring data,atmospheric electric field data,rainfall data,wind direction and force),and was optimized by technical means( " metallographic method" and " remanence law"). The research could put forward efficient and convenient analytical thinking and method for lightning derivative disaster,and further optimize accuracy and credibility of lightning disaster investigation.
文摘[Objective] The research aimed to study the meso-scale characteristics of a hail process in Linyi area. [Method] By comprehensively using MICAPS conventional observation data, automatic encryption ground station, MM5 model product and Doppler weather radar data, a strong convective hail weather process which happened in Shandong Peninsula and southeast of Shandong on May 30, 2010 was analyzed. The circulation background and physical mechanism of strong convection weather occurrence, the features of meso- and micro-scale systems were discussed. Some occurrence and development rules of such weather were found. [Result] The strong convective weather was mainly affected by the cold vortex and translot. The high-altitude northwest airflow, low-level southwest airflow, dry and cold air at the high layer, warm and wet air at the low layer, forward-tilting trough caused the strong convective weather. The radar echo analysis showed that the radar echo in the process belonged to the typical multi-monomer windstorm echo, and the strong echo zone was in the forefront of echo. When the convection development was the strongest, the echo intensity reached 65 dBz, and the echo top height surpassed 11 km. As the development of windstorm monomer, the big-value zone of vertical liquid water content product had the jumping formation and disappearance. Moreover, there was obvious weak echo zone. The windstorm monomer moved to the southeast direction as the precipitation system. In the right front of monomer moving direction, there was hook echo feature. The evolution characteristics of radial speed field at the different elevation angles before and after the hail weather occurrence were analyzed. It was found that the radial speed field had some premonitory variations before the hail weather occurrence. Doppler radar product was used to improve the initial field of MM5 model, which could improve the forecast effect in the certain degree and the accuracy of short-time forecast and nowcasting. [Conclusion] The research accumulated the experience for the short-term forecast and nowcasting work of strong convective weather in future.