Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmo...Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.展开更多
In article, I present a study on upper and lower statistical convergence, and upper and lower strong fractional weighted mean convergence by moduli for triple sequences. One of the generalizations of the discrete oper...In article, I present a study on upper and lower statistical convergence, and upper and lower strong fractional weighted mean convergence by moduli for triple sequences. One of the generalizations of the discrete operator Cesàro, was weighted mean operators, which are linear operators, too. Given a modulus function f, I established that a triple sequence that is f-upper or lower strong fractional weighted mean convergent, in some supplementary conditions, is also f-lower or upper statistically convergent. The results of this paper adapt the results obtained in [1] and [2] to upper and lower strong fractional weighted mean convergence and to triple sequence concept. Furthermore, new concepts can be applied to the approximation theory, topology, Fourier analysis, analysis interdisciplinary with applications electrical engineering, robotics and other domains.展开更多
We investigate the nature of the strong coupling constant and related physics.Through the analysis of accumulated experimental data around the world,we employ the ability of machine learning to unravel its physical la...We investigate the nature of the strong coupling constant and related physics.Through the analysis of accumulated experimental data around the world,we employ the ability of machine learning to unravel its physical laws.The result of our efforts is a formula that captures the expansive panorama of the distribution of the strong coupling constant across the entire energy range.展开更多
Due to the technical fault,a wrong version of the paper was uploaded.The content of the article was not affected,but the layout of the article was affected.The original article has been corrected.
Band convergence is considered to be a strategy with clear benefits for thermoelectric performance,generally favoring the co-optimization of conductivity and Seebeck coefficients,and the conventional means include ele...Band convergence is considered to be a strategy with clear benefits for thermoelectric performance,generally favoring the co-optimization of conductivity and Seebeck coefficients,and the conventional means include elemental filling to regulate the band.However,the influence of the most electronegative fluorine on the CoSb_(3) band remains unclear.We carry out density-functional-theory calculations and show that the valence band maximum gradually shifts downward with the increase of fluorine filling,lastly the valence band maximum converges to the highly degenerated secondary valence bands in fluorine-filled skutterudites.展开更多
In the original publication the third author name is published incorrectly as“Hayatdavoodi Masoud”.The correct author name should be read as“Masoud Hayatdavoodi”.The correct author name is available in this correc...In the original publication the third author name is published incorrectly as“Hayatdavoodi Masoud”.The correct author name should be read as“Masoud Hayatdavoodi”.The correct author name is available in this correction.展开更多
In public goods games, punishments and rewards have been shown to be effective mechanisms for maintaining individualcooperation. However, punishments and rewards are costly to incentivize cooperation. Therefore, the g...In public goods games, punishments and rewards have been shown to be effective mechanisms for maintaining individualcooperation. However, punishments and rewards are costly to incentivize cooperation. Therefore, the generation ofcostly penalties and rewards has been a complex problem in promoting the development of cooperation. In real society,specialized institutions exist to punish evil people or reward good people by collecting taxes. We propose a strong altruisticpunishment or reward strategy in the public goods game through this phenomenon. Through theoretical analysis and numericalcalculation, we can get that tax-based strong altruistic punishment (reward) has more evolutionary advantages thantraditional strong altruistic punishment (reward) in maintaining cooperation and tax-based strong altruistic reward leads toa higher level of cooperation than tax-based strong altruistic punishment.展开更多
Generative artificial intelligence(AI),as an emerging paradigm in content generation,has demonstrated its great potentials in creating high-fidelity data including images,texts,and videos.Nowadays wireless networks an...Generative artificial intelligence(AI),as an emerging paradigm in content generation,has demonstrated its great potentials in creating high-fidelity data including images,texts,and videos.Nowadays wireless networks and applications have been rapidly evolving from achieving“connected things”to embracing“connected intelligence”.Generative AI has been recognized as a fundamentally innovative technology to drive the advancement of intelligent wireless communications and networks.展开更多
Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of nob...Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed.展开更多
AIM:To compare and analyse the diagnostic efficacy of the College of Optometrists Vision Development Quality of Life Questionnaire(COVD-QOL)and the Convergence Insufficiency Symptom Survey(CISS)in detecting convergenc...AIM:To compare and analyse the diagnostic efficacy of the College of Optometrists Vision Development Quality of Life Questionnaire(COVD-QOL)and the Convergence Insufficiency Symptom Survey(CISS)in detecting convergence insufficiency and to compare their diagnostic value in clinical applications.METHODS:Using the diagnostic test method,62 adult patients with convergence insufficiency(age:24.74±3.75y)and 62 normal participants(age:23.61±3.13y)who visited the Optometry Clinic of West China Hospital of Sichuan University from April 2021 to January 2023 were included.All subjects completed the CISS and COVD-QOL.Statistical analysis of the sensitivity and specificity of the CISS and COVD-QOL and comparison and joint experimental analysis of their diagnostic efficacy were performed.RESULTS:The sensitivity of the CISS and COVD-QOL for convergence insufficiency was 64.5%and 71.0%,respectively,while the specificity was 96.8%and 67.7%,respectively.Compared to the CISS alone,the combination of the CISS and COVD-QOL demonstrated lower sensitivity and specificity.The areas under the receiver operating characteristic curve of CISS,COVD-QOL and CISS combined with COVD-QOL were 0.806,0.694 and 0.782,respectively.CONCLUSION:Considering the low sensitivity of the CISS and the low specificity of the COVD-QOL,it is recommended to supplement these questionnaires with other screening tests for the detection of convergence insufficiency.展开更多
Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C,...Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.展开更多
We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the k...We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.展开更多
We propose the new field potential by maintaining both the symmetry of the scalar gauge and the conservation law keeping N?ether’s theorem, while disregarding the symmetry of the vector gauge. The new potential forms...We propose the new field potential by maintaining both the symmetry of the scalar gauge and the conservation law keeping N?ether’s theorem, while disregarding the symmetry of the vector gauge. The new potential forms like the well-type potential where a particle behaves almost freely but is very hard to escape without external energy, which can be interpreted as local confinement and asymptotic freedom. By assuming a 2-dimensional metric tensor in 4-dimensional space-time, we suggest the existence of 3 kinds of particles that resemble QCD with 3 color charges. We also show that the mass term exists but comes to zero and derive the charge and spin values. We can regard the particle with this new potential as a gluon, and the interaction in this well-type potential as a strong interaction for the properties of mass, charge, spin, and its behavior. We suggest the eight-fold way with this new particle, which is similar to the existing method based on SU (3) symmetry. Even though the strong interaction has been analyzed in the standard model and string theory, we build a new consistent model based on the theory of relativity including Riemann geometry, and show the unification of gravitational and strong interactional field.展开更多
A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems.The global convergence of this method as well as a stronger general convergence result can be proven without a gr...A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems.The global convergence of this method as well as a stronger general convergence result can be proven without a gradient Lipschitz continuity assumption,which is more in line with the actual problems than the existing modified BFGS methods and the traditional BFGS method.Under some additional conditions,the method presented has a superlinear convergence rate,which can be regarded as an extension and supplement of BFGS-type methods with the projection technique.Finally,the effectiveness and application prospects of the proposed method are verified by numerical experiments.展开更多
The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and co...The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and convergence zone(CZ)characteristics.Based on the Gaussian vortex model,we construct various sound propagation scenarios under different eddy conditions,and carry out sound propagation experiments to obtain simulation samples.With a large number of samples,we first adopt the unified regression to set up analytic relationships between eddy conditions and CZ parameters.The sensitivity of eddy indicators to the CZ is quantitatively analyzed.Then,we adopt the machine learning(ML)algorithms to establish prediction models of CZ parameters by exploring the nonlinear relationships between multiple ME indicators and CZ parameters.Through the research,we can express the influence of ME on the CZ quantitatively,and achieve the rapid prediction of CZ parameters in ocean eddies.The prediction accuracy(R)of the CZ distance(mean R:0.9815)is obviously better than that of the CZ width(mean R:0.8728).Among the three ML algorithms,Gradient Boosting Decision Tree has the best prediction ability(root mean square error(RMSE):0.136),followed by Random Forest(RMSE:0.441)and Extreme Learning Machine(RMSE:0.518).展开更多
The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields ...The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.展开更多
In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some ...In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some important properties of such integral are discussed.Finally,various kinds of convergence theorems of a sequence of fuzzy concave integrals are proved.展开更多
Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-gr...Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.展开更多
In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p...In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.展开更多
Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redo...Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability.展开更多
基金supported by the Australian Research Council (DP200101353)。
文摘Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.
文摘In article, I present a study on upper and lower statistical convergence, and upper and lower strong fractional weighted mean convergence by moduli for triple sequences. One of the generalizations of the discrete operator Cesàro, was weighted mean operators, which are linear operators, too. Given a modulus function f, I established that a triple sequence that is f-upper or lower strong fractional weighted mean convergent, in some supplementary conditions, is also f-lower or upper statistically convergent. The results of this paper adapt the results obtained in [1] and [2] to upper and lower strong fractional weighted mean convergence and to triple sequence concept. Furthermore, new concepts can be applied to the approximation theory, topology, Fourier analysis, analysis interdisciplinary with applications electrical engineering, robotics and other domains.
基金supported by the National Natural Science Foundation of China(Grant Nos.12065014,12047501,12247101,and 12335001)the Natural Science Foundation of Gansu Province(Grant No.22JR5RA266)+5 种基金the West Light Foundation of Chinese Academy of Sciences(Grant No.21JR7RA201)supported by the China National Funds for Distinguished Young Scientists(Grant No.11825503)the National Key Research and Development Program of China(Grant No.2020YFA0406400)the 111 Project(Grant No.B20063)the fundamental Research Funds for the Central Universitiesthe Project for Top-Notch Innovative Talents of Gansu province。
文摘We investigate the nature of the strong coupling constant and related physics.Through the analysis of accumulated experimental data around the world,we employ the ability of machine learning to unravel its physical laws.The result of our efforts is a formula that captures the expansive panorama of the distribution of the strong coupling constant across the entire energy range.
文摘Due to the technical fault,a wrong version of the paper was uploaded.The content of the article was not affected,but the layout of the article was affected.The original article has been corrected.
基金supported by the National Natural Science Foundation of China (Grant Nos.52171220,92163212,and 92163119)the Research Funding of Wuhan Polytechnic University (Grant No.2022RZ059)the National Innovation and Entrepreneurship Training Program for College Students (Grant No.S202310497202)。
文摘Band convergence is considered to be a strategy with clear benefits for thermoelectric performance,generally favoring the co-optimization of conductivity and Seebeck coefficients,and the conventional means include elemental filling to regulate the band.However,the influence of the most electronegative fluorine on the CoSb_(3) band remains unclear.We carry out density-functional-theory calculations and show that the valence band maximum gradually shifts downward with the increase of fluorine filling,lastly the valence band maximum converges to the highly degenerated secondary valence bands in fluorine-filled skutterudites.
文摘In the original publication the third author name is published incorrectly as“Hayatdavoodi Masoud”.The correct author name should be read as“Masoud Hayatdavoodi”.The correct author name is available in this correction.
基金the National Natural Science Foun-dation of China(Grant No.71961003).
文摘In public goods games, punishments and rewards have been shown to be effective mechanisms for maintaining individualcooperation. However, punishments and rewards are costly to incentivize cooperation. Therefore, the generation ofcostly penalties and rewards has been a complex problem in promoting the development of cooperation. In real society,specialized institutions exist to punish evil people or reward good people by collecting taxes. We propose a strong altruisticpunishment or reward strategy in the public goods game through this phenomenon. Through theoretical analysis and numericalcalculation, we can get that tax-based strong altruistic punishment (reward) has more evolutionary advantages thantraditional strong altruistic punishment (reward) in maintaining cooperation and tax-based strong altruistic reward leads toa higher level of cooperation than tax-based strong altruistic punishment.
文摘Generative artificial intelligence(AI),as an emerging paradigm in content generation,has demonstrated its great potentials in creating high-fidelity data including images,texts,and videos.Nowadays wireless networks and applications have been rapidly evolving from achieving“connected things”to embracing“connected intelligence”.Generative AI has been recognized as a fundamentally innovative technology to drive the advancement of intelligent wireless communications and networks.
基金the National Natural Science Foundation of China(21576291,22003076)National Natural Science Foundation of China-Outstanding Youth foundation(22322814)the Fundamental Research Funds for the Central Universities(23CX03007A,22CX06012A)are gratefully acknowledge。
文摘Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed.
文摘AIM:To compare and analyse the diagnostic efficacy of the College of Optometrists Vision Development Quality of Life Questionnaire(COVD-QOL)and the Convergence Insufficiency Symptom Survey(CISS)in detecting convergence insufficiency and to compare their diagnostic value in clinical applications.METHODS:Using the diagnostic test method,62 adult patients with convergence insufficiency(age:24.74±3.75y)and 62 normal participants(age:23.61±3.13y)who visited the Optometry Clinic of West China Hospital of Sichuan University from April 2021 to January 2023 were included.All subjects completed the CISS and COVD-QOL.Statistical analysis of the sensitivity and specificity of the CISS and COVD-QOL and comparison and joint experimental analysis of their diagnostic efficacy were performed.RESULTS:The sensitivity of the CISS and COVD-QOL for convergence insufficiency was 64.5%and 71.0%,respectively,while the specificity was 96.8%and 67.7%,respectively.Compared to the CISS alone,the combination of the CISS and COVD-QOL demonstrated lower sensitivity and specificity.The areas under the receiver operating characteristic curve of CISS,COVD-QOL and CISS combined with COVD-QOL were 0.806,0.694 and 0.782,respectively.CONCLUSION:Considering the low sensitivity of the CISS and the low specificity of the COVD-QOL,it is recommended to supplement these questionnaires with other screening tests for the detection of convergence insufficiency.
基金Project supported by the National Key Program for S&T Research and Development(Grant No.2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.12174148,11874179,12074144,and 12074146)。
文摘Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.
基金supported by the National Natural Science Foundation of China (12001033)。
文摘We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.
文摘We propose the new field potential by maintaining both the symmetry of the scalar gauge and the conservation law keeping N?ether’s theorem, while disregarding the symmetry of the vector gauge. The new potential forms like the well-type potential where a particle behaves almost freely but is very hard to escape without external energy, which can be interpreted as local confinement and asymptotic freedom. By assuming a 2-dimensional metric tensor in 4-dimensional space-time, we suggest the existence of 3 kinds of particles that resemble QCD with 3 color charges. We also show that the mass term exists but comes to zero and derive the charge and spin values. We can regard the particle with this new potential as a gluon, and the interaction in this well-type potential as a strong interaction for the properties of mass, charge, spin, and its behavior. We suggest the eight-fold way with this new particle, which is similar to the existing method based on SU (3) symmetry. Even though the strong interaction has been analyzed in the standard model and string theory, we build a new consistent model based on the theory of relativity including Riemann geometry, and show the unification of gravitational and strong interactional field.
基金supported by the Guangxi Science and Technology base and Talent Project(AD22080047)the National Natural Science Foundation of Guangxi Province(2023GXNFSBA 026063)+1 种基金the Innovation Funds of Chinese University(2021BCF03001)the special foundation for Guangxi Ba Gui Scholars.
文摘A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems.The global convergence of this method as well as a stronger general convergence result can be proven without a gradient Lipschitz continuity assumption,which is more in line with the actual problems than the existing modified BFGS methods and the traditional BFGS method.Under some additional conditions,the method presented has a superlinear convergence rate,which can be regarded as an extension and supplement of BFGS-type methods with the projection technique.Finally,the effectiveness and application prospects of the proposed method are verified by numerical experiments.
基金The National Natural Science Foundation of China under contract Nos 41875061 and 41775165.
文摘The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and convergence zone(CZ)characteristics.Based on the Gaussian vortex model,we construct various sound propagation scenarios under different eddy conditions,and carry out sound propagation experiments to obtain simulation samples.With a large number of samples,we first adopt the unified regression to set up analytic relationships between eddy conditions and CZ parameters.The sensitivity of eddy indicators to the CZ is quantitatively analyzed.Then,we adopt the machine learning(ML)algorithms to establish prediction models of CZ parameters by exploring the nonlinear relationships between multiple ME indicators and CZ parameters.Through the research,we can express the influence of ME on the CZ quantitatively,and achieve the rapid prediction of CZ parameters in ocean eddies.The prediction accuracy(R)of the CZ distance(mean R:0.9815)is obviously better than that of the CZ width(mean R:0.8728).Among the three ML algorithms,Gradient Boosting Decision Tree has the best prediction ability(root mean square error(RMSE):0.136),followed by Random Forest(RMSE:0.441)and Extreme Learning Machine(RMSE:0.518).
基金financially supported by the National Key R&D Program of China(No.2022YFC3104205)the National Natural Science Foundation of China(No.42377457).
文摘The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.
基金Supported in part by the National Social Science Foundation of China(19BTJ020)。
文摘In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some important properties of such integral are discussed.Finally,various kinds of convergence theorems of a sequence of fuzzy concave integrals are proved.
基金supported by the National Natural Science Foundation of China(Grant Nos.22075159,22002066)Shandong Taishan Scholars Project(Grant Nos.ts20190932,tsqn202103058)+1 种基金Open Fund of Hubei Key Laboratory of Processing and Application of Catalytic Materials(Grant No.202203404)Postdoctoral Applied Research Project in Qingdao,and the Youth Innovation Team Project of Shandong Provincial Education Department(Grant No.2019KJC023).
文摘Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.
文摘In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021B1515120072)the Natural Science Foundation of China(22279096 and T2241003)the Fundamental Research Funds for the Central Universities(WUT:2023IVA094).
文摘Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability.