期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
On Strong Metric Dimension of Graphs and Their Complements
1
作者 Eunjeong YI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第8期1479-1492,共14页
A vertex x in a graph G strongly resolves a pair of vertices v, w if there exists a shortest x-w path containing v or a shortest x-v path containing w in G. A set of vertices SV(G) is a strong resolving set of G if ... A vertex x in a graph G strongly resolves a pair of vertices v, w if there exists a shortest x-w path containing v or a shortest x-v path containing w in G. A set of vertices SV(G) is a strong resolving set of G if every pair of distinct vertices of G is strongly resolved by some vertex in S. The strong metric dimension of G, denoted by sdim(G), is the minimum cardinality over all strong resolving sets of G. For a connected graph G of order n≥2, we characterize G such that sdim(G) equals 1, n-1, or n-2, respectively. We give a Nordhaus–Gaddum-type result for the strong metric dimension of a graph and its complement: for a graph G and its complement G, each of order n≥4 and connected, we show that 2≤sdim(G)+sdim(G)≤2( n-2). It is readily seen that sdim(G)+sdim(G)=2 if and only if n=4; we show that, when G is a tree or a unicyclic graph, sdim(G)+sdim(G)=2(n 2) if and only if n=5 and G ~=G ~=C5, the cycle on five vertices. For connected graphs G and G of order n≥5, we show that 3≤sdim(G)+sdim(G)≤2(n-3) if G is a tree; we also show that 4≤sdim(G)+sdim(G)≤2(n-3) if G is a unicyclic graph of order n≥6. Furthermore, we characterize graphs G satisfying sdim(G)+sdim(G)=2(n-3) when G is a tree or a unicyclic graph. 展开更多
关键词 strong resolving set strong metric dimension Nordhaus–Gaddum-type TREE unicyclic graph
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部