In this paper, we study the global and pullback attractors for a strongly damped wave equation with delays when the force term belongs to different space. The results following from the solution generate a compact set.
We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make a...We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make assumptions (H<sub>1</sub>) - (H<sub>4</sub>). Under of the proper assume, the main results are existence and uniqueness of the solution in proved by Galerkin method, and deal with the global attractors.展开更多
Using a new method developed in [5], we prove the existence of global attractors for the Generalized Kuramoto-Sivashinsky equation in H^3per(Ω) and H^4per(Ω).
Firstly, a priori estimates are obtained for the existence and uniqueness of solutions of two dimensional KDV equations, and prove the existence of the global attractor, finally get the upper bound estimation of the H...Firstly, a priori estimates are obtained for the existence and uniqueness of solutions of two dimensional KDV equations, and prove the existence of the global attractor, finally get the upper bound estimation of the Hausdorff and fractal dimension of attractors.展开更多
In this paper, we study the long time behavior of solution to the initial boundary value problem for a class of Kirchhoff-Boussinesq model flow . We first prove the wellness of the solutions. Then we establish the exi...In this paper, we study the long time behavior of solution to the initial boundary value problem for a class of Kirchhoff-Boussinesq model flow . We first prove the wellness of the solutions. Then we establish the existence of global attractor. 展开更多
We study a coupled nonlinear evolution system arising from the Ginzburg-Landau theory for atomic Fermi gases near the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover.First,we prove that the ...We study a coupled nonlinear evolution system arising from the Ginzburg-Landau theory for atomic Fermi gases near the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover.First,we prove that the initial boundary value problem generates a strongly continuous semigroup on a suitable phase-space which possesses a global attractor.Then we establish the existence of an exponential attractor.As a consequence,we show that the global attractor is of finite fractal dimension.展开更多
We study the strongly damped wave equations with critical nonlinearities. By choosing suitable state spaces, we prove sectorial property of the operator matrix together with its adjoint operator, investigate the...We study the strongly damped wave equations with critical nonlinearities. By choosing suitable state spaces, we prove sectorial property of the operator matrix together with its adjoint operator, investigate the associated interpolation and extrapolation spaces, analysis the criticality of the nonlinearity with critical growth, and study the higher spatial regularity of the Y-regular solution by bootstrapping.展开更多
In this paper, we study monotone properties of random and stochastic functional differential equations and their global dynamics. First, we show that random functional differential equations(RFDEs)generate the random ...In this paper, we study monotone properties of random and stochastic functional differential equations and their global dynamics. First, we show that random functional differential equations(RFDEs)generate the random dynamical system(RDS) if and only if all the solutions are globally defined, and establish the comparison theorem for RFDEs and the random Riesz representation theorem. These three results lead to the Borel measurability of coefficient functions in the Riesz representation of variational equations for quasimonotone RFDEs, which paves the way following the Smith line to establish eventual strong monotonicity for the RDS under cooperative and irreducible conditions. Then strong comparison principles, strong sublinearity theorems and the existence of random attractors for RFDEs are proved. Finally, criteria are presented for the existence of a unique random equilibrium and its global stability in the universe of all the tempered random closed sets of the positive cone. Applications to typical random or stochastic delay models in monotone dynamical systems,such as biochemical control circuits, cyclic gene models and Hopfield-type neural networks, are given.展开更多
文摘In this paper, we study the global and pullback attractors for a strongly damped wave equation with delays when the force term belongs to different space. The results following from the solution generate a compact set.
文摘We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make assumptions (H<sub>1</sub>) - (H<sub>4</sub>). Under of the proper assume, the main results are existence and uniqueness of the solution in proved by Galerkin method, and deal with the global attractors.
基金the NNSF of China(107711597)the NNSF of Gansu(3ZS041A25-006)
文摘Using a new method developed in [5], we prove the existence of global attractors for the Generalized Kuramoto-Sivashinsky equation in H^3per(Ω) and H^4per(Ω).
文摘Firstly, a priori estimates are obtained for the existence and uniqueness of solutions of two dimensional KDV equations, and prove the existence of the global attractor, finally get the upper bound estimation of the Hausdorff and fractal dimension of attractors.
文摘In this paper, we study the long time behavior of solution to the initial boundary value problem for a class of Kirchhoff-Boussinesq model flow . We first prove the wellness of the solutions. Then we establish the existence of global attractor.
基金partially supported by National Natural Science Foundation of China (Grant No.11001058)Specialized Research Fund for the Doctoral Program of Higher Educationthe Fundamental Research Funds for the Central Universities
文摘We study a coupled nonlinear evolution system arising from the Ginzburg-Landau theory for atomic Fermi gases near the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover.First,we prove that the initial boundary value problem generates a strongly continuous semigroup on a suitable phase-space which possesses a global attractor.Then we establish the existence of an exponential attractor.As a consequence,we show that the global attractor is of finite fractal dimension.
文摘We study the strongly damped wave equations with critical nonlinearities. By choosing suitable state spaces, we prove sectorial property of the operator matrix together with its adjoint operator, investigate the associated interpolation and extrapolation spaces, analysis the criticality of the nonlinearity with critical growth, and study the higher spatial regularity of the Y-regular solution by bootstrapping.
基金supported by National Natural Science Foundation of China (Grant Nos.12171321, 11771295, 11371252 and 31770470)。
文摘In this paper, we study monotone properties of random and stochastic functional differential equations and their global dynamics. First, we show that random functional differential equations(RFDEs)generate the random dynamical system(RDS) if and only if all the solutions are globally defined, and establish the comparison theorem for RFDEs and the random Riesz representation theorem. These three results lead to the Borel measurability of coefficient functions in the Riesz representation of variational equations for quasimonotone RFDEs, which paves the way following the Smith line to establish eventual strong monotonicity for the RDS under cooperative and irreducible conditions. Then strong comparison principles, strong sublinearity theorems and the existence of random attractors for RFDEs are proved. Finally, criteria are presented for the existence of a unique random equilibrium and its global stability in the universe of all the tempered random closed sets of the positive cone. Applications to typical random or stochastic delay models in monotone dynamical systems,such as biochemical control circuits, cyclic gene models and Hopfield-type neural networks, are given.