A new tangential wind profile for simulating strong tropical cyclones is put forward and planted into the NCAR- AFWA tropical cyclone bogussing scheme in MM5. The scheme for the new profile can make full use of the in...A new tangential wind profile for simulating strong tropical cyclones is put forward and planted into the NCAR- AFWA tropical cyclone bogussing scheme in MM5. The scheme for the new profile can make full use of the information from routine typhoon reports, including not only the maximum wind, but also the additional information of the wind speeds of 25.7 and 15.4 ms-1 and their corresponding radii, which are usually provided for strong cyclones. Thus, the new profile can be used to describe the outer structure of cyclones more accurately than by using the earlier scheme of MM5 in which on- ly the maximum wind speed is considered. Numerical experimental forecasts of two strong tropical cyclones are performed to examine the new profile. Results show that by using the new profile the prediction of both cyclones’ intensity can be obvi- ously improved, but the effects on the track prediction of the two cyclones are different. It seems that the new profile might be more suitable for strong cyclones with shifted tracks. However, the conclusion is drawn from only two typhoon cases, so more cases are needed to evaluate the new profile.展开更多
In order to clarify the statistical pattern by which landfalling strong tropical cyclones(LSTCs)influenced the catastrophic migrations of rice brown planthopper(BPH),Nilaparvata lugens(stl)in China,the data of the L...In order to clarify the statistical pattern by which landfalling strong tropical cyclones(LSTCs)influenced the catastrophic migrations of rice brown planthopper(BPH),Nilaparvata lugens(stl)in China,the data of the LSTCs in China and the lighting catches of BPH that covered the main Chinese rice-growing regions from 1979 to 2008 were collected and analyzed in this work with the assistance of ArcGIS9.3,a software of geographic information system.The results were as follows:(1)In China,there were 220 strong tropical cyclones that passed the main rice-growing regions and 466 great events of BPH’s immigration in the 30 years from 1979 to 2008.73 of them resulted in the occurrence of BPH’s catastrphic migration(CM)events directly and 147 of them produced indirect effect on the migrations.(2)The number of the LSTCs was variable in different years during 1979 to 2008 and their influence was not the same in the BPH’s northward and southward migrations in the years.In the 30 years,the LSTCs brought more obvious influence on the migrations in 1980,1981,2005,2006 and 2007.The influence was the most obvious in2007 and all of the 7 LSTCs produced remarkable impact on the CMs of BPH’s populations.The effect of the LSTCs on the northward immigration of BPH’s populations was the most serious in 2006 and the influence on the southward immigration was the most remarkable in 2005.(3)In these years,the most of LSTCs occurred in July,August and September and great events of BPH's immigration occurred most frequently in the same months.The LSTCs played a more important role on the CM of BPH’s populations in the three months than in other months.(4)The analysis on the spatial distribution of the LSTCs and BPH’s immigration events for the different provinces showed that the BPH’s migrations in the main rice-growing regions of the Southeastern China were influenced by the LSTCs and the impact was different with the change of their spatial probability distribution during their passages.The most serious influence of the LSTCs on the BPH’s migrations occurred in Guangdong and Fujian provinces.(5)The statistical results indicated that a suitable insect source is an indispensable condition of the CMs of BPH when a LSTC influenced a rice-growing region.展开更多
This paper focuses on the effects of two types of El Nino events on tropical cyclone activity. We classified El Nino events from 1961 to 2015 according to their sea surface temperature (SST) anomalies into an easter...This paper focuses on the effects of two types of El Nino events on tropical cyclone activity. We classified El Nino events from 1961 to 2015 according to their sea surface temperature (SST) anomalies into an eastern type and a central type. Then we selected strong tropical cyclones to statistically analyze the tropical cyclone characteristics during different events and their effects, as well as to study the possible mechanisms related to thermodynamic and dynamic factors. The tropical cyclone generation areas were found to be very similar during the two kinds of events. The average number of tropical cyclone in the eastern event is more than that in central event, and the hurricane in northeastern Pacific (HNP) has more energy than the typhoon in northwestern Pacific (TNP) in all cases. The seasonal distribution of the TNP high-incidence centers during central El Nifio events is opposite to that of the HNP. The TNP accumulated cyclone energy (ACE) intensity is similar in the fall and summer, and the HNP ACE intensity in the summer is greater than that in the fall. The SSTs are consistent with the TNP and HNP movement trends. The Walker circulation intensity was strongly affected by the eastern events, but it quickly returned to its normal state, while the intensity was slightly reduced in the central events, and it slowly returned to its normal state. The vertical velocity distributions in the Pacific are different at different stages of both events, and the distributions of vertical velocity anomalies for typhoons and hurricanes are consistent.展开更多
文摘A new tangential wind profile for simulating strong tropical cyclones is put forward and planted into the NCAR- AFWA tropical cyclone bogussing scheme in MM5. The scheme for the new profile can make full use of the information from routine typhoon reports, including not only the maximum wind, but also the additional information of the wind speeds of 25.7 and 15.4 ms-1 and their corresponding radii, which are usually provided for strong cyclones. Thus, the new profile can be used to describe the outer structure of cyclones more accurately than by using the earlier scheme of MM5 in which on- ly the maximum wind speed is considered. Numerical experimental forecasts of two strong tropical cyclones are performed to examine the new profile. Results show that by using the new profile the prediction of both cyclones’ intensity can be obvi- ously improved, but the effects on the track prediction of the two cyclones are different. It seems that the new profile might be more suitable for strong cyclones with shifted tracks. However, the conclusion is drawn from only two typhoon cases, so more cases are needed to evaluate the new profile.
基金National Natural Science Foundation of China(41075086,30671340)National Meteorological Public Professional Science and Technology Program of China(GYHY201006026)+1 种基金Agricultural Science and Technology Independent Innovation Foundation in Jiangsu Province(CX(12)3056)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In order to clarify the statistical pattern by which landfalling strong tropical cyclones(LSTCs)influenced the catastrophic migrations of rice brown planthopper(BPH),Nilaparvata lugens(stl)in China,the data of the LSTCs in China and the lighting catches of BPH that covered the main Chinese rice-growing regions from 1979 to 2008 were collected and analyzed in this work with the assistance of ArcGIS9.3,a software of geographic information system.The results were as follows:(1)In China,there were 220 strong tropical cyclones that passed the main rice-growing regions and 466 great events of BPH’s immigration in the 30 years from 1979 to 2008.73 of them resulted in the occurrence of BPH’s catastrphic migration(CM)events directly and 147 of them produced indirect effect on the migrations.(2)The number of the LSTCs was variable in different years during 1979 to 2008 and their influence was not the same in the BPH’s northward and southward migrations in the years.In the 30 years,the LSTCs brought more obvious influence on the migrations in 1980,1981,2005,2006 and 2007.The influence was the most obvious in2007 and all of the 7 LSTCs produced remarkable impact on the CMs of BPH’s populations.The effect of the LSTCs on the northward immigration of BPH’s populations was the most serious in 2006 and the influence on the southward immigration was the most remarkable in 2005.(3)In these years,the most of LSTCs occurred in July,August and September and great events of BPH's immigration occurred most frequently in the same months.The LSTCs played a more important role on the CM of BPH’s populations in the three months than in other months.(4)The analysis on the spatial distribution of the LSTCs and BPH’s immigration events for the different provinces showed that the BPH’s migrations in the main rice-growing regions of the Southeastern China were influenced by the LSTCs and the impact was different with the change of their spatial probability distribution during their passages.The most serious influence of the LSTCs on the BPH’s migrations occurred in Guangdong and Fujian provinces.(5)The statistical results indicated that a suitable insect source is an indispensable condition of the CMs of BPH when a LSTC influenced a rice-growing region.
基金supported by the National Natural Science Foundation of China(No.41067003)
文摘This paper focuses on the effects of two types of El Nino events on tropical cyclone activity. We classified El Nino events from 1961 to 2015 according to their sea surface temperature (SST) anomalies into an eastern type and a central type. Then we selected strong tropical cyclones to statistically analyze the tropical cyclone characteristics during different events and their effects, as well as to study the possible mechanisms related to thermodynamic and dynamic factors. The tropical cyclone generation areas were found to be very similar during the two kinds of events. The average number of tropical cyclone in the eastern event is more than that in central event, and the hurricane in northeastern Pacific (HNP) has more energy than the typhoon in northwestern Pacific (TNP) in all cases. The seasonal distribution of the TNP high-incidence centers during central El Nifio events is opposite to that of the HNP. The TNP accumulated cyclone energy (ACE) intensity is similar in the fall and summer, and the HNP ACE intensity in the summer is greater than that in the fall. The SSTs are consistent with the TNP and HNP movement trends. The Walker circulation intensity was strongly affected by the eastern events, but it quickly returned to its normal state, while the intensity was slightly reduced in the central events, and it slowly returned to its normal state. The vertical velocity distributions in the Pacific are different at different stages of both events, and the distributions of vertical velocity anomalies for typhoons and hurricanes are consistent.