AIM: To investigate the protective effect of stronger neo-minophafen C (SNMC) on fulminant hepatic failure (FHF) and its underlying mechanism. METHODS: A mouse model of FHF was established by intraperitoneal inj...AIM: To investigate the protective effect of stronger neo-minophafen C (SNMC) on fulminant hepatic failure (FHF) and its underlying mechanism. METHODS: A mouse model of FHF was established by intraperitoneal injection of galactosamine (D-Gal N) and lipopolysaccharide (LPS). The survival rate, liver function, inflammatory factor and liver pathological change were obtained with and without SNMC treatment. Hepatoo/te survival was estimated by observing the stained mitochondria structure with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate fluorescence nick end labeling (TUNEL) method and antibodies against cytochrome C (Cyt-C) and caspase-3. RESULTS: The levels of plasma tumor necrosis factor alpha (TNF-α), nitric oxide (NO), ET-1, interleukin-6 (IL-6), and the degree of hepatic tissue injury were decreased in the SNMC-treated groups compared with those in the model group (P 〈 0.01). However, there were no differences after different dosages administered at different time points. There was a significant difference in survival rates between the SNMC-treated groups and the model group (P 〈 0.01). The apoptosis index was 32.3% at 6 h after a low dose of SNMC, which was considerably decreased from 32.3% ± 4.7% vs 5% ± 2.83% (P 〈 0.05) to 5% on d 7. The expression of Cyt-C and caspase-3 decreased with the prolongation of therapeutic time. Typical hepatocyte apoptosis was obviously ameliorated under electron microscope with the prolongation of therapeutic time. CONCLUSION: SNMC can effectively protect liver against FHF induced by LPS/D-Gal N. SNMC can prevent hepatocyte apoptosis by inhibiting inflammatory reaction and stabilizing mitochondria membrane to suppress the release of Cyt-C and sequent activation of caspase-3.展开更多
基金Supported by the Key Program During the Tenth Five-Year Plan of HeilongJiang Province, No. 200101031-00
文摘AIM: To investigate the protective effect of stronger neo-minophafen C (SNMC) on fulminant hepatic failure (FHF) and its underlying mechanism. METHODS: A mouse model of FHF was established by intraperitoneal injection of galactosamine (D-Gal N) and lipopolysaccharide (LPS). The survival rate, liver function, inflammatory factor and liver pathological change were obtained with and without SNMC treatment. Hepatoo/te survival was estimated by observing the stained mitochondria structure with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate fluorescence nick end labeling (TUNEL) method and antibodies against cytochrome C (Cyt-C) and caspase-3. RESULTS: The levels of plasma tumor necrosis factor alpha (TNF-α), nitric oxide (NO), ET-1, interleukin-6 (IL-6), and the degree of hepatic tissue injury were decreased in the SNMC-treated groups compared with those in the model group (P 〈 0.01). However, there were no differences after different dosages administered at different time points. There was a significant difference in survival rates between the SNMC-treated groups and the model group (P 〈 0.01). The apoptosis index was 32.3% at 6 h after a low dose of SNMC, which was considerably decreased from 32.3% ± 4.7% vs 5% ± 2.83% (P 〈 0.05) to 5% on d 7. The expression of Cyt-C and caspase-3 decreased with the prolongation of therapeutic time. Typical hepatocyte apoptosis was obviously ameliorated under electron microscope with the prolongation of therapeutic time. CONCLUSION: SNMC can effectively protect liver against FHF induced by LPS/D-Gal N. SNMC can prevent hepatocyte apoptosis by inhibiting inflammatory reaction and stabilizing mitochondria membrane to suppress the release of Cyt-C and sequent activation of caspase-3.